А. В. Токарь, С. И. Оковитый, Л. И. Касьян

Днепропетровский национальный университет им. Олеся Гончара

КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ ГЕТЕРОЦИКЛИЗАЦИИ N-(АРИЛСУЛЬФОНИЛ)-ЭНДО-5-АМИНОМЕТИЛ-ЭКЗО-2,3-ЭПОКСИБИЦИКЛО[2.2.1]ГЕПТАНОВ

За допомогою методу функціоналу густини в наближенні BHandHLYP/6-31G(d) локалізовано перехідні стани реакції гетероциклізації ароматичних похідних сульфонамідів ряду епоксинорборнану. Шляхом порівняння розрахованих величин енергії активації показано суттєвий вплив характеру замісників в ароматичному циклі на перебіг процесу.

Среди многочисленных реакций раскрытия эпоксидного цикла нуклеофильными реагентами особое положение занимают внутримолекулярные процессы, протекающие в ряду каркасных соединений, и в особенности эпоксинорборнанов [5]. В связи с этим значительный интерес представляет образование N-замещенных экзо-2-гидрокси-4-азатрицикло[4.2.1.0^{3,7}]нонанов (I) в условиях окисления по Прилежаеву соответствующих непредельных производных сульфонамидов ряда норборнена (II). Так, в [3; 11] показано, что алкильные заместители у атома азота способствуют протеканию внутримолекулярной циклизации этих соединений, в то время как перфторсульфонамиды [2] оказываются неспособными к подобного рода процессам, образуя в качестве альтернативных продуктов соответствующие эпоксиды (III):

Изучение реакций окисления в ряду ароматических сульфонамидов (IVа-м), описанных в [1; 10], также подтвердило тот факт, что возможность образования азабрендановых систем на их основе в значительной степени определяется природой и расположением заместителей в арильном фрагменте молекул. Так, эпоксиды (Vа-д,з,л,м) выступают в качестве интермедиатов на пути образования соответствующих азабренданов (VIa-д,з,л,м), структуры (Vе,ж) являются конечными продуктами окисления, а сульфонамиды (IVи,к) дают смеси, содержащие соединения (Vи,к) и (VIu,к) в соотношениях 4:1 и 1:2 соответственно [4].

Установленная ранее различная способность интермедиатов (Vа-м) к циклизации побудила нас к теоретическому изучению влияния характера заместителей в ароматическом кольце на протекание внутримолекулярного раскрытия эпоксидного цикла в условиях окисления по Прилежаеву.

Проведенные ранее квантово-химические исследования гетероциклизации на примере ряда алифатических и ароматических производных сульфонамидов [6; 7; 11; 12] показали важность учета электрофильной активации атома кислорода эпоксидного цикла и решающую роль сольватационных эффектов среды при протекании процесса. Опираясь на эти результаты, в рамках настоящего исследования мы

[©] А. В. Токарь, С. И. Оковитый, Л. И. Касьян, 2008

использовали теоретическую модель, которая, наряду со структурой субстрата, также включала молекулу муравьиной кислоты, поскольку образование такого рода активированных комплексов эпоксидов показано при теоретическом изучении реакции окисления норборненов пероксикислотами [9].

$$\begin{split} Ar &= C_{6}H_{5} \ \textbf{(a)}; \ o\text{-NO}_{2}C_{6}H_{4} \ \textbf{(b)}; \ m\text{-NO}_{2}C_{6}H_{4} \ \textbf{(r)}; \ p\text{-CH}_{3}C_{6}H_{4} \ \textbf{(r)}; \\ o,p\text{-}(NO_{2})_{2}C_{6}H_{3} \ \textbf{(e)}; \ o\text{-NO}_{2},p\text{-}CH_{3}C_{6}H_{3} \ \textbf{(x)}; \ o\text{-}CH_{3},p\text{-}NO_{2}C_{6}H_{3} \ \textbf{(s)}; \\ o\text{-}OCH_{3},m'\text{-}NO_{2}C_{6}H_{3} \ \textbf{(u)}; o\text{-}NO_{2},p\text{-}ClC_{6}H_{3} \ \textbf{(x)}; \ m,p\text{-}Cl_{2}C_{6}H_{3} \ \textbf{(n)}; \\ \beta\text{-}C_{10}H_{7} \ \textbf{(m)}. \end{split}$$

В приближении BHandHLYP/6-31G(d) [8] были локализованы структуры переходных состояний (VIIа-м), а также соответствующих им предреакционных комплексов, относительно которых рассчитывались активационные барьеры процесса циклизации. Для всех стационарных точек проводился расчет колебательных частот, согласно которому переходные состояния характеризовались одной мнимой частотой, а все частоты структур, соответствующих минимумам на поверхности потенциальной энергии, были положительны [14; 15]. Влияние растворителя (этилацетат, $\varepsilon = 6.0$) учитывалось при помощи сольватационной модели Онзагера [16] для структур, предварительно оптимизированных в газовой фазе. Полученные результаты приведены в таблице.

Таблица

Переходное	Длины связей, Å		Углы, град			ΔЕ _{АКТ} , кДж/моль	
состояние	OC^3	C ³ N	OC ³ N	OC^2C^3	OC^2C^3N	газовая фаза	раствор ($\varepsilon = 6,0$)
VIIa	2,022	2,093	144,29	89,68	149,97	117,09	110,73
VII6	2,073	2,030	145,08	92,36	149,48	147,07	132,65
VIIB	2,035	2,089	143,13	90,35	148,60	130,91	122,99
VIIr	2,029	2,098	143,40	89,96	149,03	133,03	131,16
VIIд	2,022	2,093	144,34	89,68	150,38	116,84	109,52
VIIe	2,087	2,021	144,11	93,03	148,35	152,57	146,09
VIIж	2,070	2,032	145,29	92,22	149,74	146,04	132,51
VII3	2,030	2,096	143,77	90,00	149,27	128,55	125,95
VIIи	2,034	2,086	143,24	90,43	149,12	124,30	116,06
VIIĸ	2,077	2,028	144,75	92,53	149,07	148,62	139,54
VIIл	2,021	2,103	143,77	89,57	149,48	119,35	118,66
VIIm	2,020	2,093	144,28	89,56	149,72	117,33	111,95

Основные геометрические параметры переходных состояний (VIIа-м) реакции образования азабрендановых систем (Å, град) и величины соответствующих активационных барьеров (кДж/моль), рассчитанные в приближении BHandHLYP/6-31G(d)

Анализ рассчитанных геометрических параметров выявил значительную неоднородность локализованных переходных состояний и предреакционных комплексов, что позволило выделить два основных типа их геометрии, которые могут быть представлены в следующем виде:

R' = H (VII6); NO₂ (VIIe); CH₃ (VII κ); Cl (VII κ).

Сравнение длин образующихся ($C^{3}N$) и разрывающихся (OC^{3}) связей для большинства производных (таблица) свидетельствует в пользу раннего характера переходных состояний ($r(OC^{3}) < r(C^{3}N)$). И лишь для структур (**VII6,е,ж,к**), содержащих нитрогруппу в орто-положении бензольного кольца, наблюдается противоположная тенденция ($r(OC^{3}) > r(C^{3}N)$); при этом значения валентных углов ($OC^{3}N$) оказываются весьма близкими и лежат в интервале 143,1–145,3°, что указывает на $S_{N}2$ -подобную структуру переходных состояний в соответствии с механизмом Паркера-Айзекса [13].

Основанием для выделения двух описанных выше типов геометрии переходных состояний послужило также значительное отличие структур (VIIa-м), проявляющееся в образовании водородных связей. Так, для всех без исключения соединений было показано взаимодействие –O–H…O<, возникающее между атомом водорода молекулы муравьиной кислоты и атомом кислорода эпоксида. Наряду с этим для соединений (Vб,е,ж,к) также была обнаружена дополнительная водородная связь >N–H…O=N–, образующаяся при участии атома водорода связи N–H и атома кислорода о-NO₂-группы вследствие непланарного расположения последней (величины углов между плоскостями нитрогруппы и бензольного кольца для этих структур составляют 34,3–37,6°).

Расположенные в порядке уменьшения величин энергии активации, рассчитанных для газовой фазы (таблица), эпоксиды (Vа-м) образуют ряд, согласующийся с общепринятыми представлениями о влиянии природы заместителей в ароматическом ядре:

$Ve > V\kappa \approx V\delta \approx V_{\mathcal{K}} >> V_{\Gamma} > V_{B} > V_{3} > V_{H} > V_{\Lambda} > V_{M} \approx Va \approx V_{\mathcal{A}}.$

Действительно, наибольшие значения ΔE_{AKT} показаны для соединений (**Vб,е,ж,к**), содержащих заместители с ярко выраженными электроноакцепторными свойствами – 147,07, 152,57, 146,04 и 148,62 кДж/моль соответственно. В противоположность этому, для незамещенных структур (**Vа,м**), а также соединения (**V**д) с метильной группой в кольце найденные величины энергии активации оказались наименьшими и составили 117,09, 117,33 и 116,84 кДж/моль соответственно. При этом учет влияния растворителя не приводил к каким-либо существенным перестановкам в ряду, хотя и способствовал снижению барьеров активации.

Полученные результаты демонстрируют хорошую сходимость с имеющимися

экспериментальными данными и свидетельствуют о решающем влиянии заместителей и их размещения в арильном фрагменте на нуклеофильную реакционную способность атакующего атома азота, от которой, по-видимому, и зависит возможность осуществления гетероциклизации эпоксидов с образованием азабрендановых систем.

Работа выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины, грант № Ф25.3/067

Библиографические ссылки

- Касьян А. О. Новые N-(арилсульфонил)-5-аминометилбицикло[2.2.1]гепт-2-ены. Синтез, спектры ЯМР¹Н, ¹³С и химические превращения / А. О. Касьян, А. К. Исаев, Л. И. Касьян // Журн. орган. химии. – 2002. – Т. 38, вып. 4. – С. 579–590.
- 2. **Касьян А. О.** Фторсодержащие сульфонамиды ряда норборнена / А. О. Касьян, И. И. Малетина, Л. М. Ягупольский // Журн. орган. химии. 1995. Т. 31, вып. 3. С. 357–364.
- Касьян А. О. Экспериментальное и теоретическое исследование образования азабрендановых систем в реакциях эпоксидирования алкилсульфонамидов ряда норборнена / А. О. Касьян, И. Н. Тарабара, О. А. Савельева // I Межд. конф. «Химия и биологическая активность азотсодержащих гетероциклов и алкалоидов». – М., 2001. – Т. 2. – С. 136.
- Касьян А. О. Эпоксидирование и гетероциклизация в ряду арилсульфонамидов ряда норборнена / А. О. Касьян, Д. В. Карпенко, Л. И. Касьян // Журн. орган. химии. – 2005. – Т. 41, вып. 12. – С. 1802–1809.
- 5. Касьян Л. И. Алициклические эпоксидные соединения. Реакционная способность / Л. И. Касьян, А. О. Касьян, С. И. Оковитый, И. Н. Тарабара. Д., 2003. 516 с.
- 6. Савельева О. А. Квантовохимическое исследование влияния характера среды на гетероциклизацию N-(метил, трифторметил, фенилсульфонил)-эндо-5-аминометил-экзо-2,3эпоксибицикло[2.2.1]гептанов / О. А. Савельева, С. И. Оковитый, А. О. Касьян // Вопросы химии и хим. технологии. – 2004. – № 2. – С. 46–49.
- Токар А. В. Квантово-хімічне дослідження процесу гетероциклізації заміщених ендо-5амінометил-екзо-2,3-епоксибіцикло[2.2.1]гептанів. – Випускна магістерська робота / А. В. Токар. – Д., 2005. – 92 с.
- Becke A. D. A new mixing of Hartree-Fock and local density-functional theories / A. D. Becke // J. Chem. Phys. – 1993. – Vol. 98, № 2. – P. 1372–1377.
- Freccero M. Planar Transition Structures in the Epoxidation of Alkenes. A DFT Study on the Reaction of Peroxyformic Acid with Norbornene Derivatives / M. Freccero, R. Gandolfi, M. Sarzi-Amade // J. Org. Chem. – 2002. – Vol. 67, № 24. – P. 8519–8527.
- Kasyan L. I. Azabrendanes. I. Synthesis, structure and spectral parameters of N-(arylsulfonyl)-exo-2-hydroxy-4-azatricyclo[4.2.1.0^{3,7}]nonanes / L. I. Kasyan, S. V. Sereda, K. A. Potekhin // Heteroatom. Chem. – 1997. – Vol. 8, № 2. – P. 177–184.
- Kasyan L. I. Azabrendanes IV. Synthesis and characterization of N-(alkyl- and benzylsulfonyl)exo-2-hydroxy-4-azatricyclo[4.2.1.0^{3,7}]nonanes / L. I. Kasyan, I. N. Tarabara, A. O. Kasyan // Tetrahedron. – 2007. – Vol. 63, № 8. – P. 1790–1797.
- Okovytyy S. I. The quantumchemical investigation of the heterocyclization process of N-sulfonylsubstituted endo-5-aminomethyl-exo-2,3-epoxybicyclo[2.2.1]heptanes / S. I. Okovytyy, A. V. Tokar, L. I. Kasyan // 1st International Symposium Methods and Applications of Computational Chemistry. – Kharkiv, 2005. – P. 57.
- 13. Parker R. E. Mechanism of epoxide reactions / R. E. Parker, N. S. Isaacs // Chem. Rev. 1959. Vol. 59, № 9. P. 737–739.
- 14. Peng C. Using redundant internal coordinates to optimize equilibrium geometries and transition states / C. Peng, P. Y. Ayala, H. B. Schlegel // J. Comput. Chem. 1996. Vol. 17, № 1. P. 49–56.
- 15. Scott A. P. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors / A. P. Scott, L. Radom // J. Phys. Chem. 1996. Vol. 100, № 41. P. 16502–16513.
- Wong M. W. Solvent Effects 1. The Mediation of Electrostatic Effects by Solvents / M. W. Wong, M. J. Frisch, K. B. Wiberg // J. Amer. Chem. Soc. – 1991. – Vol. 113, № 13. – P. 4776–4782.

Надійшла до редколегії 21.05.08