

UDK 541.123.3

ISOTHERMAL SECTION AT 1600 °C FOR THE ZrO₂-HfO₂-Sm₂O₃ SYSTEM

Yuriy V. Yurchenko, Oksana A. Kornienko*, Oleksandr I. Bykov, Anatoliy V. Sameliuk

Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, 3 Krzhyzhanovskoho str., 03680 Kyiv, Ukraine Received 27 November 2021; accepted 21 March 2022; available online 28 April 2022

Abstract

According to the results of the samples studied by the method of X-ray phase and microstructural analyses, the phase equilibria in the ternary system ZrO₂-HfO₂-Sm₂O₃were investigated. The formation of new phases in the ZrO₂-HfO₂-Sm₂O₃ system at 1600 °C was not observed. It is established that in the studied system at 1600 °C fields of solid solutions on the basis of tetragonal (T) modification of ZrO₂, monoclinic (M) modifications of HfO₂ and monoclinic (B) modifications of Sm_2O_3 , and also the ordered phase with structure of the pyrochlore-type (Py) Ln₂Zr₂O₇ (Ln₂Hf₂O₇). The boundaries of the phase fields and the parameters of the unit cells of the formed phases are determined. The studied isothermal cross section of the ZrO₂-HfO₂-Sm₂O₃ system is characterized by the formation of continuous rows of cubic solid solutions based on a phase with a structure of the pyrochlore-type Sm₂Zr₂O₇ (Sm₂Hf₂O₇) and a structure of the fluorite type F-ZrO₂ (HfO₂). It is established that two regions of homogeneity of cubic solid solutions (F) are formed in the investigated system. The existence of these regions of homogeneity is due to the rupture of the solubility of the F-ZrO₂ (HfO₂) phase in the region of the existence of an ordered phase with a structure of the pyrochlore-type Sm₂Zr₂O₇ (Sm₂Hf₂O₇). It is established that a solid solution based on a cubic modification with a fluorite-type structure exists in equilibrium with all phases observed in the system. Isothermal cross-section of the state diagram of the system ZrO₂-HfO₂-Sm₂O₃ at 1600 °C is characterized by the presence of one three-phase (F + T + M), as well as five two-phase (B + F, two - F + Py, M + F, T + F) areas. Keywords: phase equilibria, phase diagram, solid solution, lattice parameters, functional ceramics

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ СИСТЕМИ ZrO₂-HfO₂-Sm₂O₃ ЗА 1600 °C

Юрій В. Юрченко, Оксана А. Корнієнко, Олександр І. Биков, Анатолій В. Самелюк Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, вул. Кржижановського 3, Київ, 03680, Україна

Анотація

За результатами дослідження зразків методами рентгенофазового та мікроструктурного аналізів вивчено фазові рівноваги в потрійній системі ZrO_2 -HfO_2-Sm_2O_3. Утворення нових фаз у системі ZrO_2 -HfO_2-Sm_2O_3 за 1600 °C не спостерігалося. Встановлено, що в дослідженій системі за 1600 °C утворюються поля твердих розчинів на основі тетрагональної (T) модифікації ZrO_2 , моноклинної (M) модифікацій HfO_2 і моноклинної (B) модифікацій Sm_2O_3, а також упорядкованої фази зі структурою типу пірохлору (Py) Ln_2Zr_2O7 (Ln_2Hf2O_7). Визначено границі фазових полів та параметри елементарних комірок утворених фаз. Досліджений ізотермічний переріз системи ZrO_2 -HfO_2-Sm_2O_3 характеризується утворення неперервних рядів кубічних твердих розчинів на основі фази зі структурою типу пірохлору Sm_2Zr_2O7 (Sm_2Hf2O_7) та зі структурою типу флюориту F-ZrO_2 (HfO_2). Встановлено, що в дослідженій системі утворюється дві області гомогенності кубічних твердих розчинів зі структурою типу флюориту. Існування цих областей гомогенності обумовлено розривом розчинності фази F-ZrO_2 (HfO_2) в області існування упорядкованої фази зі структурою типу пірохлору Sm_2Zr_2O7 (Sm_2Hf_2O_7). Встановлено, що твердий розчин на основі кубічної модифікації зі структурою типу флюориту існує в рівновазі з усіма фазами, що спостерігаються в системі. Ізотермічний переріз дослідженої діаграми стану системи ZrO_2-HfO_2-Sm_2O_3 за 1600 °C характеризується наявністю однієї трифазної (F+T+M), а також п'яти двофазних (B+F, дві – F+Py, M+F, T+F) областей.

Ключові слова: фазові рівноваги, діаграма стану, тверді розчини, періоди кристалічних ґраток, функціональна кераміка.

*Corresponding author: e-mail: Kornienkooksana@ukr.net © 2022 Oles Honchar Dnipro National University; doi: 10.15421/jchemtech.v30i1.245246

Вступ

Розвиток та промисловості техніки потребує створення нових керамічних матеріалів з покращеними властивостями. Керамічні матеріали на основі діоксидів цирконію та гафнію легованих оксидами рідкісноземельних елементів (P3E) £ перспективними для створення нових матеріалів функціонального та [1-20]. конструкційного призначення стабілізований Частково повністю або цирконій (IV) оксид завдяки унікальному поєднанню фізичних механічних та характеристик використовується як функціональна та конструкційна кераміка [7-20]. Гафній (IV) оксид є кристалографічним аналогом цирконій (IV) оксиду, а також вони характеризуються однаковими іонними радіусами (0.82 Å). Це дає можливість розглядати HfO₂ в якості легуючої домішки ZrO₂. Останнім часом збільшується необхідність розробки нових керамічних матеріалів, здатних працювати В екстремальних умовах. Матеріали на основі цирконатів ($Ln_2Zr_2O_7$) та гафнатів ($Ln_2Hf_2O_7$) лантаноїдів характеризуються високими температурами плавлення та відсутністю фазових перетворень В широкому концентраційному та температурному інтервалі [13; 16-17]. Вони вважаються перспективними для розробки матеріалів для теплозахисних покриттів [1; 4–5], твердих електролітів [3], а також як матеріали для іммобілізації радіоактивних відходів [6].

Діаграма стану системи ZrO₂-HfO₂-Sm₂O₃ є фізико-хімічною основою для створення нових матеріалів функціонального та конструкційного призначення. Дані про термодинамічну стабільність твердих розчинів на основі діоксидів цирконію, гафнію та самарію у літературі відсутні, що обумовлює необхідність дослідження фазових рівноваг у потрійній системі ZrO₂-HfO₂-Sm₂O₃.

Фазові рівноваги в системі ZrO₂-HfO₂ досліджено в работах [21-24]. Вказана система відноситься до числа систем з необмеженою розчинністю компонентів в твердому та ZrO_2-HfO_2 рідкому стані. Для системи характерно утворення твердих розчинів на основі моноклінної (М), тетрагональної (Т) та кубічної (F) кристалічних модифікацій вихідних компонентів. Встановлено, що в системі ZrO₂-HfO₂ відбувається підвищення температури фазових перетворень M \rightarrow T та T \rightarrow F зі збільшенням концентрації HfO₂.

Діаграми стану систем ZrO₂-Sm₂O₃ та HfO₂- Sm_2O_3 характеризуються граничною розчинністю компонентів в твердому стані [25-39]. Зазначені системи мають подібну будову, хоча і характеризуються деякими відмінностями пов'язаними з температурою фазових перетворень. У вказаних системах утворюються тверді розчини на основі різних поліморфних модифікацій вихідних оксидів, а також упорядкованої фази зі структурою типу пірохлору Sm₂Zr₂O₇ (Sm₂Hf₂O₇). Цирконат самарію існує за температур ~ 2025 °С [25], 1920 °С [32], однак відповідно до [31] ця температура набагато више ~ 2400 °С [34]. У той самий час гафнат самарію плавиться інконгруентно за більш високої температури 2550 ± 25 °С. Ліквідус систем (ZrO₂-Sm₂O₃ та характеризується наявністю $HfO_2-Sm_2O_3$) однієї евтектичної точки L ≓ F + X (2190 °С, 75 мол. % Sm₂O₃ для системи ZrO₂-Sm₂O₃ [34] та 2240 °C, 76 мол. % Sm₂O₃ для системи HfO₂-Sm₂O₃ [39]). Три інші реакції, Х ≓ F + H та H ≓ F + А, А ≓ F + В були встановлені за 2100 і 1880, 1900 °С, та при 2200 і 2040, 1925 °С, для систем на основі діоксидів цирконію та гафнію, відповідно [34; 39]. Встановлено, що твердий розчин зі структурою типу флюориту розриву В температурному зазнає i концентраційному інтервалі існування сполуки Sm₂Zr₂O₇ (Sm₂Hf₂O₇). Границі області гомогенності F-фази складають 40-55 і 72-80 мол. % Sm₂O₃ (1820 °C), 35-51 і 73-79 мол. % ZrO₂ (1500 °C) та 74-78 мол. % ZrO₂ (1100 °С) [34] та 96-77 і 47,5-39 мол. % НfO₂ (2100 °C) [39].

Відомості по фазові рівноваги в потрійній системі HfO₂-ZrO₂-Sm₂O₃ обмежені та потребують додаткових досліджень. У даній роботі вперше досліджено взаємодію оксидів цирконію, гафнію та самарію за 1600 °C у всьому інтервалі концентрацій та побудовано відповідний ізотермічний переріз.

Результати та їх обговорення

Азотнокислі солі цирконію та гафнію ZrO(NO₃)₂·2H₂O (HfO(NO₃)₂·2H₂O), та оксид Sm₂O₃ марки СмО-Е з вмістом основного компоненту 99.99 % використовували як вихідні речовини. Sm_2O_3 попередньо просушували в лабораторному муфелі (SNOL 15/1100 LHM01) за 300 °С (2 год). Пресування отриманих шихт в таблетки проводили в сталевій прес-формі під тиском 10-30 МПа. Термообробку експериментальних зразків проводили в 3 стадії: прожарювання в печі муфельній (SNOL 10/1300 *LHM01*) 3

нагрівачами H23U5T (фехраль) за 1100 °C (2000 год.), що дозволяє позбутися залишків нітратів, та подальшою термообробкою у високотемпературній печі (*Micropyretics Heaters International M18-40*) з нагрівачами з MoSi₂ за 1500 °C (80 год) та за 1600 °C (10 год) у середовищі повітря, в результаті якого відбувається дифузійно контрольоване вирівнювання складу відповідно з діаграмою стану системи.

Визначення фазового складу зразків, після їх термообробки за 1600 °С проводили порошкової рентгенографії методом (рентгенофазового аналізу) на пристрої ДРОН-3 з випромінюванням мідного аноду (СиК_α). Шаг сканування становив 0.05-0.1 град, експозиція – 4 с, діапазон кутів сканування 2θ – від 10 до 100°. Зйомку проводили зразків за стандартної визначення фазового температури. Для використано складу було базу даних Міжнародного комітету порошкових стандартів (JSPDS International Center for Diffraction Data 1999). Розрахунок параметрів елементарних комірок утворених фаз проводили за методом найменших квадратів з використання програми LATTIC.

Для мікроструктурних досліджень зразки полірували на шлифовально-полірувальному станку (Buehler EcoMet 250 Pro). Дослідження мікроструктури зразків проводили на шліфах відпалених зразків після термічного травлення з наступним напиленням шару золота, за допомогою скануючого електронного мікроскопу SUPERPROBE-733 ("JEOL, Japan, Palo Alto, CA) у зворотновідбитих електронах (BSE).

Ізотермічний переріз потрійної діаграми стану системи ZrO₂-HfO₂-Sm₂O₃ за 1600 °C представлено на рис.1. Хімічний та фазовий досліджених склади зразків, а також параметри елементарних комірок утворених фаз наведено в таблиці. При досліджені потрійної дослідженої фазових рівноваг утворення нових фаз системи не спостерігалося.

За допомогою концентраційних параметрів залежностей елементарних комірок утворених фаз (рис. 2-4) визначали положення меж фазових полів. Результати мікроструктурних досліджень представлено Отримані рис. 5. результати на мікроструктурних досліджень узгоджуються з даними ренгенофазового аналізу.

Рис. 1. Ізотермічний переріз потрійної діаграми стану системи ZrO₂−HfO₃−Sm₂O₃ за 1600 °C (○ – однофазні, ● – двофазні, ● – трифазні зразки).

Fig. 1. Isothermal section at 1600 °C for the ZrO₂–HfO₃–Sm₂O₃ system (° – single-phase samples,) – two-phase samples, • – three-phase samples

- Рис. 2. Концентраційна залежність параметра *а* елементарних комірок твердих розчинів зі структурою типу пірохлору (Ру) у перерізі ZrO₂-(50 мол. % HfO₂-50 мол. % Sm₂O₃) системи ZrO₂-HfO₂-Sm₂O₃ після термообробки зразків за 1600 °C
- Fig. 2. Concentration dependences of lattice parameters for solid solutions based on pylochore-type (Py) along the ZrO₂-(50 mol % HfO₂-50 mol % Sm₂O₃) section in the system ZrO₂-HfO₂-Sm₂O₃ heat treated at 1600 °C

Рис. 3. Концентраційна залежність параметра *а* елементарних комірок твердих розчинів зі структурою типу флюориту (F) у перерізі ZrO₂-(50 мол. % HfO₂-50 мол. % Sm₂O₃) системи ZrO₂-HfO₂-Sm₂O₃ після термообробки зразків за 1600 °C

Fig. 3. Concentration dependences of lattice parameters for solid solutions based on fluorite-type (F) along the ZrO₂-(50 mol % HfO₂-50 mol % Sm₂O₃) section in the system ZrO₂-HfO₂-Sm₂O₃ heat treated at 1600 °C

Рис. 4. Концентраційна залежність параметра *а* елементарних комірок твердих розчинів зі структурою типу флюориту (F) у перерізі Sm₂O₃-(50 мол. % HfO₂-50 мол. % ZrO₂) системи ZrO₂-HfO₂-Sm₂O₃ після термообробки зразків за 1600 °C

Fig. 4. Concentration dependences of lattice parameters for solid solutions based on fluorite-type (F) along the Sm₂O₃-(50 mol % HfO₂-50 mol % ZrO₂) section in the system ZrO₂-HfO₂-Sm₂O₃ heat treated at 1600 °C

Як відомо, цирконій (IV) оксид та гафній (IV) оксид - кристалографічні аналоги [40]. Тому в дослідженій системі спостерігається утворення неперервних рядів твердих розчинів на основі кубічної модифікації типу флюориту F-ZrO₂ (HfO₂) та упорядкованої фази типу пірохлору Sm₂Zr₂O₇ (Sm₂Hf₂O₇). Утворення 2 областей гомогенності зi структурою типу флюориту обумовлено розривом розчинності зазначеної області гомогенності внаслідок утворення упорядкованої фази зі структурою типу пірохлору $Sm_2Zr_2O_7$ $(Sm_2Hf_2O_7).$ Область гомогенності твердих розчинів типу флюориту, що розташована в куті з великим вмістом Sm₂O₃, дещо звужується в порівняні з подвійними системами ZrO₂-Sm₂O₃ та HfO₂-Sm₂O₃ [34; 39]. Параметри елементарних комірок кубічних твердих розчинів зi структурою типу флюориту змінюються від a = 0.5246 нм для гетерогенного зразка (Pv+F) складу 40 мол. % ZrO₂-30 мол. % HfO₂-30 мол. % Sm₂O₃ до *a* = 0.5200 HM для граничного складу твердого розчину та до a = 0.5168 нм для гетерогенного зразка (F+T) складу 70 мол. % ZrO₂-15 мол. % HfO₂-15 мол. % Sm₂O₃ за перерізом ZrO₂-(50 мол. % HfO₂-50 мол. % Параметри Sm_2O_3).

елементарних комірок кубічних твердих розчинів F-ZrO₂ (HfO₂) змінюються від a =0.5150 нм для гетерогенного зразка (F+T) складу 47.5 мол. % ZrO₂-47.5 мол. % HfO₂-5 мол. % Sm₂O₃ до *a* = 0.5175 нм для граничного складу твердого розчину та до a = 0.5208 нм для гетерогенного зразка (Ру+F) складу 37.5 мол. % ZrO₂-37.5 мол. % HfO₂-25 мол. % Sm₂O₃, а також від а = 0.5335 нм для гетерогенного зразка (Ру+F) складу 27.5 мол. % ZrO₂-27.5 мол. % HfO₂-45 мол. % Sm₂O₃ до *a* = 0.5350 нм для гетерогенного зразка (F+B) складу 20 мол. % ZrO₂-20 мол. % HfO₂-60 мол. % Sm₂O₃ за перерізом Sm₂O₃-(50 мол. % HfO₂-50 мол.% ZrO_2).

Характерна мікроструктура для кубічних твердих розчинів зi структурою типу флюориту представлена на рис. 5. ε. Мікроструктура зразка, належить ЩО двофазній області (F+Py) характеризується двома складовими, які чітко розрізняються за контрастом. Матрицю, в зазначеному складі, утворює темна порувата структура, яка була ідентифікована як кубічний твердий розчин зі структурою типу пірохлору. Світла фаза, що належить F-ZrO₂ рівномірно розподілена по поверхні.

Ж Рис. 5 - Мікроструктури зразків системи ZrO₂-HfO₂-Sm₂O₃, після термообробки при 1600 °C, BSE: а - 70 мол. % ZrO₂-15 мол. % HfO₂-15 мол. % Sm₂O₃, BSE× 400, (F+T); б - 95 мол.% ZrO₂-2.5 мол. % HfO₂-2.5 мол. % Sm₂O₃, BSE× 2000 (F+T); в - 97 мол. % ZrO2-1.5 мол. % HfO2-1.5 мол. % Sm2O3, BSE× 400 (F+T); світла - F-ZrO2, темна - T-ZrO2, чорне –пори; г - 99 мол. % ZrO₂-0.5 мол. % HfO₂-0.5 мол. % Sm₂O₃, BSE×400, (T*); д - 30 мол. % ZrO₂-64 мол. % La2O3-6 мол. % Sm2O3, BSE× 2000 (F+T+M); e - 30 мол. % ZrO2-64 мол. % La2O3-6 мол. % Sm2O3, BSE× 400 (F+T+M); світла – М, сіра– F, світло сіра – Т, чорне –пори є -22.5 мол. % ZrO₂-22.5 мол. % HfO₂-55 мол. % Sm₂O₃, BSE× 2000, (F+Py); світла – F, сіра– Ру, чорне –пори; ж – 15 мол. % ZrO₂–15 мол. % HfO₂–70 мол. % Sm₂O₃, BSE× 200 (F+B); світла - В, сіра- F, чорне - пори; з - 65 мол. % ZrO₂-17.5 мол. % HfO₂-17.5 мол. % Sm₂O₃, BSE× 2000 (F)

Fig. 5. SEM microstructures of the samples in the system ZrO₂-HfO₂-Sm₂O₃ heat treated at 1600°C: a - 70 mol % ZrO₂-15 mol % HfO₂-15 mol % Sm₂O₃, BSE× 400, (F+T); b - 95 mol % ZrO₂-2.5 mol % HfO₂-2.5 mol % Sm₂O₃, BSE× 2000 (F+T); c - 97 mol % ZrO₂-1.5 mol % HfO₂-1.5 mol % Sm₂O₃, BSE× 400 (F+T); light - F-ZrO₂, grey - T-ZrO₂, black -pores; d -99 mol % ZrO₂-0.5 mol % HfO₂-0.5 mol % Sm₂O₃, BSE× 400, (T*); e - 30 mol % ZrO₂-64 mol % La₂O₃-6 mol % Sm₂O₃, BSE× 400 (F+T+M); light - M, grey-F, light grey - T, black - pores; f - 30 mol % ZrO2-64 mol % La2O3-6 mol % Sm2O3, BSE× 400 (F+T+M); light – M, grey – F, light grey – T, black – pores; g -22.5 mol % ZrO₂-22.5 mol % HfO₂-55 mol % Sm₂O₃, BSE× 2000, (F+Py); light - F, grey - Py, black - pores; h - 15 mol % ZrO₂-15 mol % HfO₂-70 mol % Sm₂O₃, BSE× 200 (F+B): light - B, grey - F, black - pores; j - 65 mol % ZrO₂-17.5 mol % HfO₂-17.5 mol % Sm₂O₃, BSE× 2000 (F)

В куті з великим вмістом оксиду самарію утворюється незначна область гомогенності на основі моноклінної В-модифікації Ln₂O₃. При додавання третього компоненту спостерігається звуження зазначеної області в порівнянні 3 граничними подвійними системами [34; 39]. Для дослідженої потрійної системи, гранична розчинність HfO₂ (ZrO₂) в кристалічній ґратці В- Sm₂O₃ становить

e

0.5 мол. %. Параметри елементарної комірки B- Sm₂O₃ змінюються від *a* = 1.4701 нм, *b* = 0.3221 нм, *c* = 0.9121 нм, *β* = 70.82 для граничного складу твердого розчину до *a* = 1.4695 нм, *b* = 0.3234 нм, *c* = 0.9118 нм, β = 71.14 для гетерогенного зразка (F+B) складу 1 мол. % ZrO₂-1 мол. % HfO₂-99 мол. % Sm₂O₃. Мікроструктуру гетерогенного зразка (F+B) представлено на рис. 5 ж. На вказаній структурі спостерігається утворення двох структурних складових, що відрізняються за контрастом. Матрицю становить темна фаза, що належить кубічному твердому розчину зі структурою типу флюориту, на поверхні якої рівномірно розподілені світлі зерна B- Sm₂O₃.

За температури 1600 °С спостерігається неперервного утворення ряду твердих розчинів на основі упорядкованої фази зі структурою типу пірохлору (Ру). Протяжність зазначеної області гомогенності майже не змінюється порівняні граничними В 3 подвійними системами [34; 39]. Межі існування області гомогенності на основі (Pv) було підтверджено РФА зразків наступних складів: 20 мол. % ZrO₂-40 мол. % HfO₂-40 мол. % Sm₂O₃, 35 мол. % ZrO₂-32.5 мол. % HfO₂-32.5 мол. % Sm₂O₃, 32.5 мол. % ZrO₂-32.5 мол. % HfO2-35 мол. % Sm2O3, 30 мол. % ZrO₂-30 мол. % HfO₂-40 мол. % Sm₂O₃ однофазні, 15 мол. % ZrO₂-42.5 мол. % HfO₂-42.5 мол. % Sm₂O₃, 40 мол. % ZrO₂-30 мол. % HfO₂-30 мол. % Sm₂O₃, 35 мол. % ZrO₂-35 мол. % HfO2-30 мол. % Sm2O3, 27.5 мол. % ZrO₂-27.5 мол. % HfO₂-45 мол. % Sm₂O₃ двофазні (Py+F). Параметри елементарних комірок твердих розчинів зі структурою типу пірохлору змінюються від a = 1.0595 нм для гетерогенного зразка (Ру+F) складу 0 мол. % ZrO₂-50 мол. % HfO₂-50 мол. % Sm₂O₃ до *а* = 1.0576 нм для граничного складу твердого розчину, що містить 20 мол. % ZrO₂-40 мол. % HfO₂−40 мол. % Sm₂O₃ та до *a* = 1.0492 нм для двофазного зразка (Ру+F) складу 40 мол. % ZrO₂-30 мол. % HfO₂-30 мол. % Sm₂O₃ за перерізом ZrO₂-(50 мол.% HfO₂-50 мол.% Sm₂O₃) та від *a* = 1.0424 нм для двофазного зразка (Py+F), що містить 37.5 мол. % ZrO₂-37.5 мол. % HfO₂-25 мол. % Sm₂O₃ до *a* = 1.0537 нм для граничного складу твердого розчину, що містить 32.5 мол. % ZrO₂-32.5 мол. % HfO₂-35 мол. % Sm₂O₃ та до *a* = 1.0611 нм для двофазного зразка (Ру+F) складу 27.5 мол. % ZrO₂-27.5 мол. % HfO₂-45 мол. % Sm₂O₃.

Напевно, утворення твердих розчинів типу пірохлору в даній системі пов'язано 3 заміщенням іонів Hf4+ іонами Zr4+. Таке судження термодинамічно обґрунтовано наступними міркуваннями. Іони Hf4+та Zr4+ ізоморфно заміщують один одного та не потребують додаткової затрати енергії системи на компенсацію заряду. Крім того, характеризується однаковим іонним вони радіусом, що також сприяє процесу заміщення. Заміщення в підґратці катіонів Zr⁴⁺ (Hf⁴⁺) на Sm³⁺ супроводжується утворенням кисневих вакансій та відповідною іонно-електронною компенсацією.

Область гомогенності твердих розчинів з структурою тетрагональною витягнута вздовж обмежуючої подвійної системи ZrO₂-HfO₂. Тверді розчини на основі T-ZrO₂ не загартовуються при режимах охолодження, що використовувались в цьому досліджені. На дифрактограмах, отриманих при кімнатній температурі, присутні лінії характерні для моноклінної модифікації M-ZrO₂. Значного розчинення Sm₂O₃ в кристалічній ґратці твердого тетрагонального розчину не спостерігається. Мікроструктури зразків двофазної області (F+T) представлено на рис. 5 а-в. Утворені фази чітко розрізняються за контрастом та морфологією. Основу представлених мікроструктур становить темна фаза, що належить тетрагональному твердому розчину на основі ZrO₂. Світла фаза, кількість якої зменшується зі збільшенням концентрації ZrO₂, була ідентифікована як F- ZrO_2 .

Зі сторони граничної системи ZrO₂-HfO₂ спостерігається утворення незначної області гомогенності на основі моноклінної (М) модифікації HfO₂. Розчинність Sm_2O_3 кристалічній ґрадці зазначеного вище твердого розчину становить < 1 мол. %. Тверді розчини на основі моноклінної (М) модифікації HfO2 виявлені в двофазній (F+M) та трифазній (F+T+M) областях. Не зважаючи на те, що на дифрактограмах отриманих зразків ми не спостерігали утворення піків, що належать тетрагональній структурі, за допомогою мікроструктурних досліджень вдалось чітко визначити наявність трифазної області (F+M+T)5 (рис. д-е). Зазначена мікроструктура містить три структурні складові, що відрізняються за морфологією та контрастом. Матрицю становить сіра фаза, що характеризується майже без пористою структурою та належить кубічним твердим розчинам типу флюориту. Фази, що характеризують моноклінну та тетрагональну структури мають певну огранку та відрізняються за контрастом. Світла фаза була ідентифікована як М-НfO₂, cipa – T-ZrO₂.

Висновки

Досліджено фазові рівноваги в потрійній системі ZrO₂-HfO₂-Sm₂O₃ та побудовано ізотермічний переріз при 1600 [°]С. Утворення нових фаз в дослідженій потрійній системі не

Journal of Chemistry and Technologies, 2022, 30(1), 34-43

спостерігалось. Встановлено, що при температурі дослідження в даній системі утворюються неперервні ряди кубічних твердих розчинів зі структурою типу флюориту та пірохлору. Будова ізотермічного перерізу потрійної діаграми стану системи ZrO₂-HfO₂-Sm₂O₃ за 1600 °С характеризується утворення однієї трифазної області (F+T+M). Отримані результати можуть бути використанні для створення нових керамічних матеріалів функціонального та конструкційного призначення з наперед заданими властивостями.

Таблиця

Хімічний і фазовий склади, параметри елементарних комірок фаз системи ZrO2-HfO2-Sm2O3 після термообробки зразків при 1600 °C, 10 год (за даними РФА та СЕМ)

Table

Phase composition and lattice parameters of ZrO₂-HfO₂-Sm₂O₃ samples annealed at 1600 °C for 10 h (according to XRD and scanning electron microscopy)

Хімічний склад. Мол. %			Фазовий	Параметри елементарних комірок фаз. нм						
ZrO ₂	HfO ₂	Sm_2O_3	- склад і параметри елементарних комірок. Нм	<f></f>	Py	< <u></u> < <u>M</u> *>				
				а	а	а	b	С	β	
Переріз ZrO ₂ - (50 мол. % HfO ₂ – 50мол.% Sm ₂ O ₃)										
0	50	50	Pv + <f></f>	0.5350	1.0595	-	-	-	_	
5	47.5	47.5	 Pv + <f></f>	0.5349	1.0593	_	_	_	_	
10	45	45	Pv + <f></f>	0.5289	1.0592	_	_	_	_	
15	42.5	42.5	 Pv + <f></f>	_	1.0584	_	_	-	_	
20	40	40	Pv	_	1.0576	_	_	_	_	
25	37.5	37.5	Pv	_	1.0560	_	_	_	_	
30	35	35	Pv	_	1.0542	_	_	_	_	
35	32.5	32.5	Pv	_	1.0526	_	_	_	_	
40	30	30	 Pv + <f></f>	0.5246	1.0492	_	_	_	_	
45	27.5	27.5	Pv + <f></f>	0.5233	1.0464	_	_	_	_	
50	25	25	Pv + <f></f>	0.5211	1.0428	_	_	_	_	
55	22.5	22.5	<f></f>	0.5200	-	_	_	_	_	
60	20	20	<f></f>	0.5188	_	_	_	_		
65	17.5	175	<f></f>	0.5176	-					
70	17.5	17.5	<f>+<t*></t*></f>	0.5170						
75	12.5	125	<f>+<t*></t*></f>	0.5164						
80	10	12.5	<f>+<t*></t*></f>	0.5162	_	05156	0 5 2 2 2	0 5 0 3 6	00 00	
00	75	75	< <u>r</u> >+< <u>r</u> >	0.5102	-	0.5150	0.5555	0.5050	99.90	
00	7.J E	7.5	<[·>+<[> <e> + <t*></t*></e>	0.5150	_	0.5203	0.5250	0.5243	00.0E	
90	<u>כ</u>		< <u>r>+<</u> <u>r</u> >	0.5150	-	0.5155	0.5271	0.5230	99.05	
95	2.5	2.5 1 E	< <u>r>+<</u> <u>r</u> >	0.5154	-	0.5154	0.5270	0.5251	99.04	
97	1.5	1.5	< <u>r</u> >+<1'>	0.5151	-	0.5150	0.5275	0.5251	99.92	
99	0.5	0.5		-	-	0.5140	0.5208	0.5255	99.//	
	F0	0		-(50 мол. %	Zr02- 50 M0	0.5272	0 5242	0 5100	07.20	
47 5	30 47 F	<u> </u>	<[`>	-	-	0.5275	0.5242	0.5190	97.20	
47.5	47.5	5	<f>+<1*></f>	0.5150	-	0.5124	0.5242	0.5221	98.92	
45	45	10	<r>>+<1*></r>	0.5154	_	0.5151	0.4885	0.6496	94.17	
42.5	42.5	15	<{>>	0.51/5	_	_	-	_	-	
40 27 F	40 27 F	20	< <u></u>	0.5188	-	_	-	_	-	
37.5	37.5	25	Py+ <f></f>	0.5208	1.0424	-	-	_	-	
35	35	30	Py+ <f></f>	0.5238	1.0477	-	-	-	-	
32.5	32.5	35	Py	-	1.0537	-	-	_	-	
30	30	40	Py P	-	1.0596	-	-	-	-	
27.5	27.5	45	Py+ <f></f>	0.5335	1.0611	-	-	_	-	
25	25	50	Py+ <f></f>	0.5344	1.0628	-	-	-	-	
22.5	22.5	55	Py+ <f></f>	0.5349	1.0699	-	-	-	-	
20	20	60	<f>+<r></r></f>	0.5350	-	-	-	-	-	
17.5	17.5	65	<f>+<r></r></f>	0.5351	-	-	-	-	-	
15	15	70	<f>+<r></r></f>	0.5353	-	-	-	-	-	
12.5	12.5	75	<f>+</f>	0.5358	-	1.4488	0.3237	0.9122	70.89	
10	10	80	<f>+</f>	0.5364	-	1.4500	0.3302	0.9090	73.31	
5	5	90	<f>+</f>	0.5366	-	1.4650	0.3235	0.9124	71.35	
2.5	2.5	95	<f>+</f>	0.5372	-	1.4735	0.3226	0.9125	71.19	
2	2	96	<f>+</f>	-	-	1.4729	0.3154	0.9228	70.36	
1.5	1.5	97	<f>+</f>	-	-	1.4693	0.3231	0.9121	71.16	
1	1	98	<f>+</f>	-	-	1.4695	0.3234	0.9118	71.14	
0.5	0.5	99		-	-	1.4701	0.3221	0.9121	70.82	

Journal of Chemistry and Technologies, 2022, 30(1), 34-43

							Продовження таблиці		
0	0	100		-	-	-	-	-	-
Ізоконцентрата 30 % ZrO ₂									
30	69	1	<m></m>	-	-	0.5049	0.5093	0.5463	95.44
30	67	3	<m>+<f>+<t*></t*></f></m>	0.5143	-	0.5055	0.5105	0.5464	95.55
30	65	5	<m>+<f>+<t*></t*></f></m>	0.5143	-	0.5040	0.5116	0.5464	95.62
30	63	7	<f>+<t*></t*></f>	0.5147	-	0.5069	0.4668	0.4742	87.32
30	60	10	<f></f>	0.5158	-	-	_	_	-

*) При заданих умовах (T=1600 °C, 10 год. у повітрі) тетрагональна Т-модифікація ZrO₂ не зберігається, замість неї спостерігали утворення моноклінної М-модифікації ZrO₂. Позначення фаз: – тверді розчини на основі моноклинної модифікації Sm₂O₃; <F> – тверді розчини на основі кубічної модифікації зі структурою типу флюориту ZrO₂ (HfO₂); Py – упорядкована фаза зі структурою типу пірохлору Sm₂Zr₂O₇ (Sm₂Hf₂O₇). *) At given conditions (at 1600°C for 10 h in air) tetragonal modification of T-ZrO2 does not harden, instead formation of monoclinic modification of M-ZrO2 was observed. Designation of phases: , solid solutions based on monoclinic modification of Sm₂O₃; <F>, solid solutions based on cubic modification with fluorite-type structure of ZrO₂ (HfO₂); Py -ordered phase of type-pyrochlore Sm₂Zr₂O₇ (Sm₂Hf₂O₇).

References

- [1] Mikuśkiewicz, M., Migas, D., Moskal. G. (2018). Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. *Surf & Coat Technol. 354*, 66–75. https://doi.org/10.1016/j.surfcoat.2018.08.096.
- [2] Gupta, S.K., Zuniga, J. P., Abdou, M., Thomas, M.P., Guiton, B. S., Mao, Y. (2018). Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. *Surf & Coat Technol. 25*, 66–75. https://doi.org/10.1016/j.cej.2019.122314.
- [3] Shlyakhtina, A. V., Lyskov, N. V., Shchegolikhin, A. N., Kolbanev, I.V., Chernyak, S. A., Konysheva, E. Yu. (2021). Valence state of europium and samarium in Ln₂Hf₂O₇ (Ln = Eu, Sm) based oxygen ion conductors. *Ceram. Internat.* 47, 26898–26906.

https://doi.org/10.1016/j.ceramint.2021.06.099.

[4] Sun, M., Sui, Y., Gao, K., Tan, C., Dai, L., Zhou, G., Zhang, Y. (2019). Theoretical investigation of mechanical and thermal properties of RE₂Hf₂O₇ (RE = La, Ce, Pr, Nd, Pm and Sm) pyrochlore oxides. *Ceram. Internat.* 45, 12101– 12105.

https://doi.org/10.1016/j.ceramint.2019.03.108.

- [5] Sevastyanov, V. G., Simonenko, E. P., Simonenko, N. P., Stolyarova, V. L., Lopatin, S. I., Kuznetsov, N. T. (2015). Synthesis, vaporization and thermodynamics of ceramic powders based on the Y₂O₃–ZrO₂–HfO₂ system. *Mater. Chem.* and *Phys.* 153, 78–87. <u>https://doi.org/10.1016/j.matchemphys.2014.12.037</u>
- [6] Bakradze, M. M., Doronin, O. N., Artemenko, N. I., Stekhov, P. A., Marakhovskii, P. S., Stolyarova, V. L. (2021). Physicochemical Properties of Sm₂O₃-ZrO₂-HfO₂ Ceramics for the Development of Promising Thermal Barrier Coatings. *Russ. J. of Inorg. Chem.* 66, 789-797.

https://doi.org/10.1134/S003602362105003X

- [7] Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Shugurov, S. M., Shilov, A. L., Karachevtsev, F. N. (2021). Mass spectrometric study of ceramics in the Sm₂O₃-ZrO₂-HfO₂ system at high temperatures. *Rap Commun in Mass Spectr*. *35(9)*, 1–13. <u>https://doi.org 10.1002/rcm.9066</u>
- [8] Kablov, E. N., Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Karachevtsev, F. N. (2019) Vaporization and thermodynamics of ceramics in the Y₂O₃-ZrO₂-HfO₂ system. *Rap Commun in Mass Spectrom.* 33 (19), 1537– 1546. <u>https://doi.org/10.1002/rcm.8501</u>
- [9] Kablov, E. N., Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Fabrichnaya, O. B., Ilatovskaya, M. O., Karachevtsev, F. N. (2018). Vaporization and

thermodynamics of ceramics based on the La₂O₃-Y₂O₃-HfO₂ system studied by the high-temperature mass spectrometric method. Rap Commun in Mass Spectrom. 32 (9), 686-694. <u>https://doi.org/10.1002/rcm.8081</u>

- [10] Kablov, E. N., Stolyarova, V. L., Lopatin, S. I., Karachevtsev, F. N., Folomeikin, Y. I. (2017). Hightemperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd₂O₃-Y₂O₃-HfO₂ system. *Rap Commun in Mass Spectrom. 31 (9)*, 1137–11464. https://doi.org/10.1002/rcm.7892
- [11] Kashin, D. S., Stekhov, P. A. (2018). Modern thermal barrier coatings obtained byelectron-beam physical vapor deposition (a review). *Proc VIAM. 62 (2)*, 84–90. https://doi.org/10.18577/2307-6046-2018-0-2-10-10
- [12] Kol, S., Oral, A. Y. (2019). Hf-Based High-k Dielectrics: A Review. Acta Phys Polonic A. 138, P. 873–881. <u>https://doi.org/10.12693/APhysPolA.136.873</u>
- [13] Stolyarova, V. L., Vorozhtcov, V. A., Shilov, A. L., Lopatin, S. I., Shugurov SM (2020) Ceramics based on the Sm₂O₃-Y₂O₃ and Sm₂O₃-HfO₂ systems at high temperatures: Thermodynamics and modeling. *Mater Chem and Phys. 252, 123240.* DOI:<u>10.1016/j.matchemphys.2020.123240</u>
- [14] Mikuśkiewicz, M., Migas, D., Moskal, G. (2018). Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. *Surf Coatings Technol.* 354, 66–75. <u>https://doi.org/10.1016/j.surfcoat.2018.08.096</u>
- [15] Zinatloo-Ajabshir, S., Ghasemian, N., Salavati-Niasari, M. (2020). Green synthesis of Ln₂Zr₂O₇ (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propaneselective catalytic reduction of NOx process. *Ceram Int.* 46, 66–73.

https://doi.org/10.1016/j.ceramint.2019.08.231

[16] Kornienko, O. A., Bykov, O. I., Sameljuk, A. V., Bataiev, Yu. M. (2021) Structure of isothermal sections of the state of the system $ZrO_2 - La_2O_3 - Eu_2O_3$ at temperatures 1500 and 1250 °C. J of the Europ Ceram Soc. 41 (3), 2145–2156/

https://doi.org/10.1016/j.jeurceramsoc.2020.10.033

- [17] Andrievskaya, E., Kornienko, O., Bykov, A., Sameljuk, A. (2020). Phase Equilibria in the ZrO₂-La₂O₃-Gd₂O₃ System at 1600°C. *Powder Metall Met Ceram. 58 (11-12)*, 714–724. <u>https://doi.org/10.1007/s11106-020-00128-7</u>
- [18] Li, Y., Meng, X., Chen, Q., Zhu, J., Xu, J., Michael, J. (2021). Reece, Electronic structure and thermal properties of Sm³⁺-doped La₂Zr₂O₇: First-principles calculations and

experimental study. *J of the Amer Ceram Soc. 104*, 1475-1488. <u>https://doi.org/10.1111/jace.17561</u>

- [19] Yang, L., Zhu, C., Sheng, Y., Nian, H., Li, Q., Song, P., Lu, W., Yang, J., Liu. B. (2018). Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. *J of the Amer Ceram Soc. 102*, 2830–2840. https://doi.org/10.1111/jace.16073
- [20] Roncallo, G., Cacciamani, G., Vacchieri, E., Ilatovskaia, M., Saenko, I., Fabrichnaya, O. (2020). Thermodynamic modeling and experimental investigation of the MgO-Y₂O₃-ZrO₂ system. *J of the Amer Ceram Soc. 103*, 5337– 5353. <u>https://doi.org/10.1111/jace.17224</u>
- [21] Shevchenko, A. V, Lopato, L. M., Tkachenko, V. D., Ruban A. K. (1987). Interaction of hafnium and zirconium dioxides. *Izv. USSR Acad. of Scien. Inorg. Mater.* 23, 259–63.
- [22] Wang, C., Zinkevich, M., Aldinger, F. (2006). The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. J. Amer. Ceram. Soc. 89, 3751–3758. <u>https://doi.org/10.1111/j.1551-2916.2006.01286.x.</u>
- [23] Gluskova, V. B., Kravchinskaya, M. V. (1985). HfO₂-based refractory compounds and solid solutions: I. Phase diagrams of the HfO₂-M₂O₃ and HfO₂-MO systems. *Ceram.* Internat. 11, 56-64. https://doi.org/10.1016/0272-8842(85)90010-0.
- [24] Andrievskaya, E. R., Gerasimyuk, G. I., Kornienko, O. A., Samelyuk, A. V., Lopato, L. M., Red'ko, V. P. (2006). Phase equilibria in the HfO₂–ZrO₂–CeO₂ system at 1500 °C. *Powd. Metall. and Met. Ceram.* 45, 448–456. https://doi.org/10.1007/s11106-006-0105-y.
- [25] Rouanet, A. (1971). Contribution to the study of zirconia systems - oxides of lanthanides in the voyage of fusion: Memoire of these. *Rev Intern. Hautes. Temper. and Refract.* 8, 161–180.
- [26] Wang, C., Zinkevich, M., Aldinger, F. (2007). Experimental Investigation and Thermodynamic Modeling of the ZrO₂-SmO_{1.5} System. J. Am. Ceram. Soc. 90, 2210–2219. https://doi.org/10.1111/j.1551-2916.2007.01692.x
- [27] Kornienko, O. A., Andrievskaya, O. R., Bykov, O. I., Sameljuk, A. V., Bataiev, Yu. M. (2021). Phase equilibrium in systems based on oxides of zirconium, lanthanum and samarium. *J. of the Europ. Ceram. Soc.* 41, 3603–3613.
 - https://doi.org/10.1016/j.jeurceramsoc.2021.01.004,
- [28] Glushkova, V. B., Sazonova, L. V. (1967). Influence of rare earth oxide additives on zirconium dioxide polymorphism. *Chem of high-temper Mat*. P. 83–90.

- [29] Perez, M., Jorba, Y. (1962). Contribution a Letude Des Systems Zircone-Oxides De Terres Rares. Annual Chim. 7, 479-511.
- [30] Korniienko, O. A., Bykov, A. I., Andrievskaya, E. R. (2020). Phase Equilibria in the ZrO₂-La₂O₃-Sm₂O₃ System at 1100 °C. *Powd. Metall. Met. Ceram.* 59, 224– 231. <u>https://doi.org/10.1007/s11106-020-00154-5.</u>
- [31] Zoz, E. I., Fomichev, E. N., Kalashnik, A. A., Eliseeva, G. G. (1982). On the structure and properties of zirconates and hafnates of REE. J. Nonorgan. Chem. 27, 95–99.
- [32] Andrievskaya, E. R., Lopato, L. M. (1995). Influence of composition on the T→M transformation in the systems ZrO₂-Ln₂O₃ (Ln = La, Nd, Sm, Eu). *J. Mater. Sci. 36*, 2591– 2596.
- [33] Andrievskaya, E. R., Kornienko, O. A., Samelyuk, A. V., Gorodov, V. S., Cherkasova, K. A., Zgurovets, V. O. (2008). Interaction of samarium oxide with zirconium oxide at a temperature of 1500 °C. *Moder. Probl. of Phys. Mater. Sci.* 17, 16–24.
- [34] Wang, C., Zinkevich, M., Aldinger, F. (2007). Phase diagrams and thermodynamics of rera-earth-doped zirconia ceramics. *Pur. Appl. Chem.* 79, 1731–1753. https://doi.org/10.1351/pac200779101731.
- [35] Wang, C., Zinkevich, M., Aldinger, F. (2006). The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. J. Amer. Ceram. Soc. 89:3751-3758. https://doi.org/10.1111/j.1551-2916.2006.01286.x
- [36] Gluskova, V. B., Kravchinskaya, M. V. (1985). HfO₂-based refractory compounds and solid solutions: I. Phase diagrams of the HfO₂-M₂O₃ and HfO₂-MO systems. *Ceram. Internat* 11, 56–64.

https://doi.org/10.1016/0272-8842(85)90010-0

- [37] Duran, P. (2006). The system Hafnia-Samaria. J of the Amer Ceram Soc 62:9–12. https://doi.org/<u>10.1111 /</u> <u>i.1151-2916.1979.tb18794.x</u>
- [38] Andrievskaya, E. R., Smirnov, V., Lopato, L. M. (2004). Phase Equilibria in the System Hafnia-Yttria-Samaria at 1600 °C. *High Temper. Mater. and Proc.* 23,147–162. https://doi.org/10.1515 / HTMP.2004.23.3.147.
- [39] Shevchenko, A. V., Lopato, L. M., Nazarenko, L. V. (1984). The systems of HfO₂ with oxides of samarium, gadolinium, terbium and dysprosium at high temperatures. *Izv. Acad. Nauk. SSSR Neorg. Mater. 20*, 1862–1866.
- [40] Pyatenko, Yu. A. (1959) On crystal chemistry and some features of pyrochlore group minerals. *Crystallography. 4*, 204–208.