И. В. Ткаченко, И. Н. Тарабара

Днепропетровский национальный университет им. Олеся Гончара

ЭПОКСИИМИДЫ РЯДА НОРБОРНАНА В РЕАКЦИЯХ С ФЕНИЛАЦЕТИЛЕНИЛМАГНИЙБРОМИДОМ

Розроблено метод синтезу N-заміщених 5-фенілацетиленіл-9-екзо-гідрокси-3-оксо-4-азо-11-оксатетрацикло[5.2.1.1^{5,8}.0^{2,6}]ундеканів на основі доступних епоксиімідів ряду норборнана, будову отриманих сполук підтверджено за допомогою даних IU-спектрів і спектрів ЯМР ¹Н.

Ранее нами неоднократно демонстрировалась возможность трансформации эпоксиимидов ряда норборнана в сложные три- и тетрациклические гетероциклические системы в реакциях с нуклеофильными реагентами различной природы, в частности, комплексными гидридами металлов, этилатом натрия, алкилмагнийгалогенидами [1; 4; 6; 7]. Целью данной работы стало изучение поведения эпоксидов этого ряда (3) в реакциях с фенилацетиленилмагнийбромидом.

Известные эпоксиды (3а–е) получены окислением олефинов пероксимуравьиной кислотой *in situ* по стандартной методике [2]; синтез имидов (2а–е) осуществлен по классической методике [5] кипячением эквимольных количеств эндикового ангидрида (1) и соответствующего амина в ледяной уксусной кислоте. Фенилацетиленилмагнийбромид синтезирован обменной реакцией между фенилацетиленом и этилмагнийбромидом в абсолютном тетрагидрофуране.

R = CH₃ (a), C₃H₇-i (δ), CH₂Ph (в), Ph (г), C₆H₄Br-π (д), C₆H₄OCH₃-π (e)

Было показано, что обработка эпоксидов (3) фенилацетиленилмагнийбромидом независимо от типа заместителя при атоме азота приводит к образованию новых гетероциклических соединений со структурой 3-оксо-4-аза-11-оксатетрацикло[5.2.1.1^{5,8}.0^{2,6}]ундекана (5а-е) с хорошим выходом; наиболее оптимальным оказалось использование эквимольного соотношения реагентов.

© И. В. Ткаченко, И. Н. Тарабара, 2008

Строение синтезированных гетероциклов (5а–е) подтверждено с помощью данных ИК-спектроскопии и спектроскопии ЯМР ¹Н (табл. 1, 2). Анализ ИКспектров позволил сделать предварительные выводы о характере возникающих функциональных групп в молекулах синтезированных соединений – появлении широких полос в области 3400–3300 см⁻¹, характеризующих валентные колебания связей О-Н, а также интенсивных полос поглощения карбонильных групп лактамного фрагмента в области 1685–1665 см⁻¹. Поглощение замещенного ацетиленового фрагмента проявляется в виде малоинтенсивных полос в области 2240– 2190 см⁻¹ [3].

Таблица 1

№ соеди- нения	Выход, %	R <i>f</i> (эфир)	Т. пл., °С	Параметры ИК-спектров, см ⁻¹	Данные элементного анализа, N, %		
					Найдено	Формула	Вычис- лено
5a	98	0,51	188–189	3370, 2210, 1685, 1500, 1450, 1395, 1250, 1150	4,62	C ₁₈ H ₁₇ NO ₃	4,74
56	97	0,42	163–165	3300, 2235, 1660, 1430, 1378, 1190, 1045	4,47	C ₂₀ H ₂₁ NO ₃	4,33
5в	92	0,55	214–215		3,70	$C_{24}H_{21}NO_3$	3,77
5г	85	0,37	210–211	3365, 3005, 2190, 1675, 1520, 1470, 1160, 1060	3,82	C ₂₃ H ₁₉ NO ₃	3,92
5д	72	0,35	176–177		3.30	C ₂₃ H ₁₈ BrNO ₃	3,21
5e	92	0,40	204–205	3367, 3010, 2210, 1665, 1530, 1440, 1235, 1050	3,96	C ₂₄ H ₂₁ NO ₄	3,68

Физические свойства и параметры ИК-спектров соединений (5а-е)

Благодаря высокой асимметрии молекул синтезированных соединений и, как следствие, существенной неэквивалентности протонов тетрациклической системы, спектры ЯМР ¹Н являются достаточно сложными и, в то же время, наиболее информативными для установления структуры (табл. 2). Отнесение сигналов выполнено на основании критериев, разработанных ранее для родственных систем [1]. Ключевыми сигналами в спектрах являются синглет и дублет протонов H⁹ и H⁸, проявляющиеся в областях 3.90–3.60 и 4.26–4.43 м. д. соответственно и являющиеся достаточно характерными для производных ряда норборнана, аннелированных пятичленным циклом. Во всех спектрах также присутствуют сигналы остальных протонов каркаса, представленные, как правило, сложными мультиплетами, а также сигналы протонов заместителей (табл. 2).

На наш взгляд, такое протекание реакции можно интерпретировать в рамках простого механизма, заключающегося во внутримолекулярной циклизации продуктов присоединения атегиленилмагнийгалогенида по карбонильной группе (4); последующий гидролиз приводит к образованию конечных продуктов (5).

Таблица 2

№ соеди- нения	H^{1}	H^2	H^{6}	H^{7}	H^{8}	H9	$\mathrm{H}^{10s}\mathrm{H}^{10a}$	Заместитель
5a	2.69	3.31	2.75	3.01	4.29 ${}^{2}J_{9,8}4.9$	3.83	$\begin{array}{c} 2.20 \ 1.71 \\ {}^2J_{10s, \ 10a} \ 10.9 \end{array}$	7.45–7.30 (5H, Ph), 2.60 (1H, OH), 2.50 (6H, Me)
56	2.74	3.28	2.81	3.04	4.32 ² J _{9,8} 4.9	3.82	2.21 1.67 ² J _{10s, 10a} 10.9	7.45–7.30 (5H, Ph), 4.06 (1H, C <u>H</u> (Me)2), 2.61 (1H, OH), 1.51 (6H, CH(Me)2)
5в	2.61	3.34	2.93	3.08	4.26 ² J _{9,8} 4.9	3.63	$\begin{array}{c} 2.20 \ 1.72 \\ {}^2J_{10s, \ 10a} \ 11.0 \end{array}$	7.45–7.15 (10H, Ph), 4.71 (1H, C <u>H</u> HPh), 4.48 (1H, CH <u>H</u> Ph), 2.23 (1H, OH)
5г	2.49	3.49	3.04	3.10	4.26	3.61	2.10 1.73 ² J _{10s, 10a} 11.0	7.50–7.15 (10H, Ph), 2.56 (1H, OH)
5д	2.72	3.46	3.07	3.17	4.43 ² J _{9,8} 4.9	3.89	$\begin{array}{c} 2.28 \ 1.71 \\ {}^2J_{10s, \ 10a} \ 11.0 \end{array}$	7.55–7.20 (10H, Ph, Ar), 5.25 (1H, OH)
5e	2.68	3.42	3.01	3.11	4.35 ² J _{9,8} 5.0	3.78	$2.22 \ 1.73 \\ {}^2J_{10s, \ 10a} \ 10.9$	7.55–7.20 (10H, Ph, Ar), 5.25 (1H, OH), 2.25 (3H, OMe)

Параметры спектров ЯМР ¹Н соединений (5а-5е), б, м. д., КССВ, Гц

Экспериментальная часть

ИК-спектры измеряли на спектрометре UR-20 для образцов соединений в таблетках с бромидом калия. Спектры ЯМР ¹Н записывали на радиоспектрометре Varian VXR-Unity с рабочими частотами 200 и 300 МГц для растворов соединений в DMSO или CDCl₃ с использованием ТМС в качестве внутреннего стандарта. Контроль протекания реакций и чистоты синтезированных соединений осуществляли методом TCX на пластинах Silufol UV-254, элюент – эфир, проявитель – пары йода. Элементный анализ выполняли на анализаторе Carlo Erba. Тетрагидрофуран перегоняли над алюмогидридом лития непосредственно перед проведением реакций.

Взаимодействие эпоксиимидов с фенилацетиленилмагнийбромидом (общая методика). К стружке магния (0,19 г, 7.8 ммоль) в безводном тетрагидрофуране (7 мл) при охлаждении до 0 °С добавляли свежеперегнанный этилбромид (0.87 мл, 7.8 ммоль), после растворения всего магния полученную смесь охлаждали до -20 °С и к образовавшемуся раствору реактива Гриньяра добавляли 0,8 г (7,8 ммоль) фенилацетилена. Реакционную смесь перемешивали при этой температуре до прекращения выделения этана, а затем в один прием добавляли 7,8 ммоль соответствующего эпоксида (**3а–е**). После окончания реакции (данные TCX) растворитель удаляли в вакууме, остаток обрабатывали ледяной водой, нейтрализовали 1 М HCl и перемешивали при комнатной температуре 10 мин. Реакционную смесь экстрагировали хлороформом (2×15 мл), органическую фазу промывали насыщенным раствором NaCl и сушили над CaCl₂. Растворитель удаляли в вакууме, продукт очищали перекристаллизацией из 2-пропанола или этилацетата. По данной методике получены соединения (**5а–е**), физические свойства и спектральные параметры которых приведены в табл. 1, 2.

Работа выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины, грант № Ф25.3/067

Библиографические ссылки

- Касьян Л.И. Структура продуктов восстановления N-(м-толил)-экзо-2,3эпоксибицикло[2.2.1]гептан-эндо,эндо-5,6-дикарбокс-имида алюмогид-ридом лития / Л.И. Касьян, О.В. Крищик, А.О. Касьян, И.Н. Тарабара // Журн. орган. химии. – 2004. – Т. 40, вып. 12. – С. 1878-1879.
- Касьян Л.И. Эпоксидные производные имидов ряда норборнена / Л.И. Касьян, О.В. Крищик, Л.К. Умрыхина, А.О. Касьян // Вісник Дніпропетр. ун-ту. Хімія. – 1998. – Вип. 3. – С. 87–90.
- 3. Наканиси К. Инфракрасные спектры и строение органических соединений / К. Наканиси. М., 1965. 209 с.
- Тарабара И.Н. Каскадные реакции имидов ряда эпоксинорборнана / И.Н. Тарабара, И.В. Ткаченко, В.А. Пальчиков, Л.И. Касьян // Тези доп. XXI Української конференції з органічної хімії. – Чернігів, 2007. – С. 63.
- Тарабара И.Н. Взаимодействие имидов ряда норборнена с ароматическими азидами / И.Н. Тарабара, А.О. Касьян, М.Ю. Яровой, С.В. Шишкина, О.В. Шишкин, Л.И. Касьян // Журн. орган. химии. – 2004. – Т. 40, вып. 7. – С. 1033–1039.
- Ткаченко И.В. Имиды ряда эпоксинорборнана в реакциях с реактивами Гриньяра / И.В. Ткаченко, И.Н. Тарабара // Тези доп. V Всеукраїнської конференції молодих вчених та студентів з актуальних питань хімії. – Днепропетровск, 2007. – С. 44.
- Tarabara I.N. exo-2-Epoxybicyclo[2.2.1]heptan-endo-5,6-dicarbox-imides: Versatile Sinton's for Preparation of O- and N-Heterocycles / I.N. Tarabara, V.A. Palchikov, A.V. Vakulenko, S.V. Shishkina, O.V. Shishkin, L.I. Kasyan // Abstr. of 8th Annual Florida Heterocyclic Conference. Gainesville, USA, 2007. – P. 41.

Надійшла до редколегії 02.06.08

УДК 547.892

А. А. Гапонов, И. Н. Тарабара

Днепропетровский национальный университет им. Олеся Гончара

ВЗАИМОДЕЙСТВИЕ 4-ФЕНИЛ-1Н-1,5-БЕНЗОДИАЗЕПИНТИОНА-2 С АЦИЛИРУЮЩИМИ АГЕНТАМИ РАЗЛИЧНОЙ ПРИРОДЫ

Установлена залежність напрямку перебігу реакції ацилювання 4-феніл-1H-1,5-бензодіазепінтіона-2 від характеру ацилюючого агента, будову отриманих сполук підтверджено за допомогою даних IЧ-, мас-спектрів і спектрів ЯМР ¹Н.

Ранее было установлено, что характер продуктов ацилирования замещенных 4-фенил-2,3-дигидро-1H-1,5-бензодиазепин-2-онов в значительной степени определяется как структурой субстрата, так и типом ацилирующего агента и условиями проведения процесса. Так, при ацилировании 4-фенил-1H-1,5-бензодиазепин-2-она уксусным ангидридом в зависимости от типа заместителя в аннелированном бензольном кольце получены продукты как моно- (1), так и бис-ацилирования (2) [6; 8]. Использование в качестве ацилирующего агента хлористого ацетила в случае незамещенного 4-фенил-1H-1,5-бензодиазепин-2-она привело исключительно к образованию продукта сигматропной перегруппировки (3) [5], тогда как основными продуктами при использовании трифторуксусного ангидрида и хлористого бензоила оказались соответствующие

[©] А. А. Гапонов, И. Н. Тарабара, 2008