Библиографические ссылки

- 1. **Касьян Л.И.** Структура продуктов восстановления N-(м-толил)-экзо-2,3-эпоксибицикло[2.2.1] гептан-эндо,эндо-5,6-дикарбокс-имида алюмогид-ридом лития / Л.И. Касьян, О.В. Крищик, А.О. Касьян, И.Н. Тарабара // Журн. орган. химии. 2004. Т. 40, вып. 12. С. 1878-1879.
- 2. **Касьян Л.И.** Эпоксидные производные имидов ряда норборнена / Л.И. Касьян, О.В. Крищик, Л.К. Умрыхина, А.О. Касьян // Вісник Дніпропетр. ун-ту. Хімія. 1998. Вип. 3. С. 87—90.
- 3. **Наканиси К.** Инфракрасные спектры и строение органических соединений / К. Наканиси. М., 1965. 209 с.
- 4. **Тарабара И.Н.** Каскадные реакции имидов ряда эпоксинорборнана / И.Н. Тарабара, И.В. Ткаченко, В.А. Пальчиков, Л.И. Касьян // Тези доп. XXI Української конференції з органічної хімії. Чернігів, 2007. С. 63.
- 5. **Тарабара И.Н.** Взаимодействие имидов ряда норборнена с ароматическими азидами / И.Н. Тарабара, А.О. Касьян, М.Ю. Яровой, С.В. Шишкина, О.В. Шишкин, Л.И. Касьян // Журн. орган. химии. 2004. Т. 40, вып. 7. С. 1033–1039.
- 6. **Ткаченко И.В.** Имиды ряда эпоксинорборнана в реакциях с реактивами Гриньяра / И.В. Ткаченко, И.Н. Тарабара // Тези доп. V Всеукраїнської конференції молодих вчених та студентів з актуальних питань хімії. Днепропетровск, 2007. С. 44.
- 7. **Tarabara I.N.** exo-2-Epoxybicyclo[2.2.1]heptan-endo-5,6-dicarbox-imides: Versatile Sinton's for Preparation of O- and N-Heterocycles / I.N. Tarabara, V.A. Palchikov, A.V. Vakulenko, S.V. Shishkina, O.V. Shishkin, L.I. Kasyan // Abstr. of 8th Annual Florida Heterocyclic Conference. Gainesville, USA, 2007. P. 41.

Надійшла до редколегії 02.06.08

УДК 547.892

А. А. Гапонов, И. Н. Тарабара

Днепропетровский национальный университет им. Олеся Гончара

ВЗАИМОДЕЙСТВИЕ 4-ФЕНИЛ-1Н-1,5-БЕНЗОДИАЗЕПИНТИОНА-2 С АЦИЛИРУЮЩИМИ АГЕНТАМИ РАЗЛИЧНОЙ ПРИРОДЫ

Установлена залежність напрямку перебігу реакції ацилювання 4-феніл-1H-1,5-бензодіазепінтіона-2 від характеру ацилюючого агента, будову отриманих сполук підтверджено за допомогою даних IЧ-, мас-спектрів і спектрів ЯМР 1 H.

Ранее было установлено, что характер продуктов ацилирования замещенных 4-фенил-2,3-дигидро-1H-1,5-бензодиазепин-2-онов в значительной степени определяется как структурой субстрата, так и типом ацилирующего агента и условиями проведения процесса. Так, при ацилировании 4-фенил-1H-1,5-бензодиазепин-2-она уксусным ангидридом в зависимости от типа заместителя в аннелированном бензольном кольце получены продукты как моно- (1), так и бис-ацилирования (2) [6; 8]. Использование в качестве ацилирующего агента хлористого ацетила в случае незамещенного 4-фенил-1H-1,5-бензодиазепин-2-она привело исключительно к образованию продукта сигматропной перегруппировки (3) [5], тогда как основными продуктами при использовании трифторуксусного ангидрида и хлористого бензоила оказались соответствующие

© А. А. Гапонов, И. Н. Тарабара, 2008

3-ацилпроизводные ($\mathbf{4a}$, $\mathbf{6}$, $R = CF_3$, Ph); в первом случае в качестве минорного продукта также выделено соединение ($\mathbf{3}$) [5].

Анализ литературных данных показал, что реакции 2,3-дигидро-1,5-бензодиазепинтионов-2 с ацилирующими агентами ранее не изучались, что и определило цели данной работы. В качестве объекта исследования был выбран 4-фенил-1H-1,5-бензодиазепинтион-2 (5), синтезированный по классической методике взаимодействием 4-фенил-1,5-бензодиазепинона-2 с пентасульфидом фосфора в кипящем пиридине [9].

$$P_2S_5$$
 пиридин P_2S_5 Рh

Оказалось, что взаимодействие соединения (5) с уксусным ангидридом в зависимости от условий проведения реакции приводит к образованию продуктов различного строения.

Так, при взаимодействии тиона (5) с десятикратным избытком уксусного ангидрида при 6-часовом нагревании до $100-110\,^{\circ}\mathrm{C}$ удалось выделить вещество яркокрасного цвета, которому на основании данных спектра ЯМР $^{1}\mathrm{H}$ и ИК-спектра была приписана структура 4-фенил-S-ацетил-1,5-бензодиазепина (6). Действительно, в спектре ЯМР $^{1}\mathrm{H}$ соединения (6) по сравнению со спектром ЯМР $^{1}\mathrm{H}$ исходного бензодиазепинтиона-2 исчезает сигнал протонов метиленовой группы и появляется синглет метинного протона при атоме C_3 (6.42 м. д.). В спектре также присутствуют синглет протона группы NH в области $10.54\,^{\circ}\mathrm{M}$. д. и сигналы девяти протонов ароматического фрагмента в области $7.10-7.86\,^{\circ}\mathrm{M}$. д. Подтверждают структуру (6) и данные ИК-спектра, в котором наблюдаются полосы поглощения свободной и ассоциированной группы NH в области $3300-3140\,^{\circ}\mathrm{cm}^{-1}$. Интенсивная полоса поглощения с частотой $1660\,^{\circ}\mathrm{cm}^{-1}$ характеризует валентные колебания карбонильной группы [2; 7].

Проведение этой реакции при более высокой температуре (130–140 °C, 6 ч) позволило выделить из реакционной массы с выходом 45 % вещество ярко-желтого цвета, анализ спектра ЯМР ¹Н и ИК-спектра которого позволил приписать ему структуру 1-фенилвинил-3-ацетилбензимидазол-2-тиона (7). В спектре ЯМР ¹Н этого соединения отсутствует сигнал протона группы NH, а сигналы протонов винильной группы представлены в виде двух синглетов в области 5.72 и 6.33 м. д, что является характерным для подобных систем [1; 3; 8; 10]. Сигнал метильных протонов группы NCOCH₃ сдвинут в более слабое поле по сравнению с сигналом прото-

нов группы SCOCH₃ (2.70 м. д. и 1.90 м. д. соответственно). Отсутствие в ИКспектре соединения (7) полос поглощения в области 3500–3100 см⁻¹ является также свидетельством в пользу предложенной структуры. Интенсивная полоса поглощения в области 1730 см⁻¹ может быть отнесена к поглощению карбонильного фрагмента N-ацетильной группы [2; 7].

Взаимодействия тиона (5) с хлористым ацетилом как и в случае оксо-аналога [5] закончилось образованием продукта термической изомеризации 1-фенилвинил-бензимидазол-2-тиона (8) с хорошим выходом.

Достаточно информативными для установления структуры полученного соединения оказались спектр ЯМР 1 Н, ИК- и масс-спектры. В спектре ЯМР 1 Н сохраняется сигнал протона группы NH в области 12.85 м. д. и сигнал ароматических протонов в области 6.76–7.34 м. д., исчезает сигнал протонов метиленовой группы бензодиазепинтиона (5) в области 3.92 м. д. и появляются два характерных синглета протонов винильной группы в области 5.55 м. д. и 6.23 м. д.

Масс-спектр данного соединения также подтверждает предложенную структуру. Помимо пика молекулярного иона с m/z 252 в спектре присутствуют интенсивный пик иона с m/z 150, возникший в результате отщепления фенилвинильной группы, а также пики ионов с m/z 219 и 220, обусловленные элиминированием радикала SH и атома серы. Присутствие в масс-спектре интенсивных ионов $[M-S]^{+}$ и $[M-SH]^{+}$ является характерной особенностью тиосоединений [4]. В ИК-спектре соединения (8) присутствуют полосы в области 3280–3200 см $^{-1}$, относящиеся к колебаниям группы NH, полоса поглощения связи C=C (1630 см $^{-1}$), а также сильные полосы в области 1190 см $^{-1}$ и 900 см $^{-1}$, характеризующие валентные колебания группы C=S и группы =CH $_2$ [2; 7].

Не привело к образованию продукта нормального ацилирования и взаимодействие бензодиазепинтиона (5) с хлористым бензоилом в диметилформамиде в качестве единственного продукта также был получен 1-фенилвинилбензимидазол-2-тион (8). Проба смешения соединений (8), полученных при использовании хлористого ацетила и хлористого бензоила, не обнаружила депрессии температуры плавления; идентичными оказались также ИК-спектры соединений.

Экспериментальная часть

ИК-спектры измеряли на спектрометре Specord-75-IR для образцов соединений в таблетках с бромидом калия. Спектры ЯМР ¹Н записывали на радиоспектрометрах Varian VXR с рабочей частотой генератора 400 МГц и Tesla с рабочей частотой генератора 100 МГц для растворов соединений в дейтеродиметилсульфоксиде с использованием ТМС в качестве внутреннего стандарта. Масс-спектры снимали на масс-спектрометре МХ-1320 при энергии ионизирующего излучения 70 эВ. Контроль за ходом реакций и чистотой синтезированных соединений осуществляли методом ТСХ на пластинках Silufol UV-254, элюент — смесь диэтилового эфира и гексана (1:1), проявитель — пары йода. Элементный анализ выполняли на анализаторе Carlo Erba.

S-Ацетил-4-фенил-1,5-бензодиазепин (6). К 2.52 г (0.01 моль) бензодиазепинтиона (5) добавляли 9.30 мл (0.10 моль) уксусного ангидрида и нагревали полученную смесь при перемешивании в течение 6 ч при температуре 100-110 °C под контролем ТСХ. Выпавшие после охлаждения кристаллы отфильтровывали, промывали на фильтре этанолом и перекристаллизовывали из этанола. Выход 48 %, т.пл. 206-207 °C. ИК-спектр, см⁻¹: 3320-3140, 1660, 1640, 1600, 1575, 1310, 1260, 1265, 1010, 915, 810, 755. Спектр ЯМР 1 Н, δ , м.д.: 10.54 (c, 1H, NH), 7.10-7.86 (м, 9H, $H_{\rm apom.}$), 6.42 (c, 1H, =CH₂), 1.90 (c, 3H, SCOCH₃). Найдено, %: C 69.70; H 4.71; N 9.59. $C_{17}H_{14}N_{2}OS$. Вычислено, %: C 69.39; H 4.76; N 9.52.

1-Фенилвинил-3-ацетилбензимидазол-2-тион (7). К 2.52 г (0.01 моль) бензодиазепинтиона (**5**) добавляли 9.30 мл (0.10 моль) уксусного ангидрида и кипятили реакционную смесь в течение 6 ч до окончания реакции (данные TCX). Летучие продукты удаляли в вакууме, остаток промывали этанолом и очищали перекристаллизацией из этанола. Выход 45 %, т.пл. 172–174 °C. ИК-спектр, см⁻¹: 1730, 1630, 1605, 1480, 1385, 1310, 1175, 1165, 1140, 1095, 1015, 915, 790, 755. Спектр ЯМР 1 Н, δ , м.д.: 8.20 (м, 1H, $H_{apom.}$), 7.46 (м, 5H, $H_{apom.}$), 6.74–7.30 (м, 3H, $H_{apom.}$), 6.33 (с, 1H, =CH₂), 5.72 (с, 1H, =CH₂), 2.70 (с, 3H, NCOCH₃). Найдено, %: C 69.22; H 4.68; N 9.69. $C_{17}H_{14}N_{2}OS$. Вычислено, %: C 69.39; H 4.76; N 9.52.

1-Фенилвинилбензимидазол-2-тион (8). К смеси 1.26 г (5 ммоль) бензодиазепинтиона (**5**), 0.51 г (5 ммоль) триэтиламина в 15 мл диметилформамида добавляли по каплям при перемешивании 0.36 мл (5 ммоль) хлористого ацетила в 5 мл диметилформамида. Реакционную смесь кипятили 3.5 ч, охлаждали, выпавший осадок солянокислого триэтиламина отфильтровывали, растворитель удаляли в вакууме. Остаток очищали перекристаллизацией из этанола. Выход 69 %, т.пл. 224–225 °C. ИК-спектр, см⁻¹: 3280–3200, 1630, 1595, 1475, 1460, 1432, 1420, 1365, 1350, 1300, 1190, 900, 760. Спектр ЯМР 1 Н, δ , м.д.: 12.85 (c, 1H, NH), 6.78-7.34 (м, 9H, 1 Н 1 1, 1 2, 1 3, 1 3, 1 3, 1 4, 1 4, 1 3, 1 4, 1 4, 1 5, 1 5, 1 6, 1 7, 1 7, 1 8, 1 8, 1 9, 1

Библиографические ссылки

- Аюпова А.Г. Синтез замещенных 1-изопропенил- и 1-алкилбензимидазолов / А. Г. Аюпова, Г. Ш. Кадыров, К. Сейтаниди // Химия гетероцикл. соед. – 1974. – № 2. – С. 235–237
- 2. Беллами Л. Инфракрасные спектры сложных молекул / Л. Беллами. М., 1963. 592 с.
- 3. Взаимодействие 4-метил-1,2-фенилендиамина с ацетоуксусным эфиром / А. Н. Кост, 3. Ф. Соломко, Н. М. Приходько, С. С. Тетерюк // Химия гетероцикл. соед. 1971. № 11. С. 1556—1560.
- 4. **Вульфсон Н.С.** Масс-спектрометрия органических соединений / Н. С. Вульфсон, В. Г. Заикин, А. И. Микая. М., 1986. 312 с.
- 5. **Гапонов А.А.** Ацилирование 4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2 / А. А. Гапонов. Вісник Дніпропетр. ун-ту. Хімія. 2001. Вип. 6. С. 64–66.
- 6. **Гапонов А.А.** Взаимодействие производных 4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2 с уксусным ангидридом / А. А. Гапонов // Вісник Дніпропетр. ун-ту. Хімія. 2004. № 10. С. 62–64.
- 7. **Наканиси К.** Инфракрасные спектры и строение органических соединений / К. Наканиси. М., 1965. 209 с.
- 8. **Пуоджюнайте Б. А.** Превращение дигидро-1,5-бензодиазепинонов-2 под действием уксусного ангидрида / Б. А. Пуоджюнайте, Р. А. Янчене, П. Б. Терентьев. Химия гетероцикл. соединений. 1988. № 3. С. 380–385.
- 9. Синтез и масс-спектры 2,3-дигидро-1H-1,5-бензодиазепинтионов-2 / 3. Ф. Соломко, П. А. Шарбатян, А. А. Гапонов, В. И. Авраменко // Химия гетероцикл. соед. 1990. № 3. С. 396—400.
- 10. **Achour R.** Syntheses des benzimidazolo [1,2-a] benzimidazoles a partir des benzodiazepine-1,5-ones-2 / R. Achour, R. Zniber. Bull. Soc. Chim. Belg. 1987. Vol. 96, № 10. P. 787–792.

Надійшла до редколегії 02.06.08

УДК 547.536

А. А. Анищенко, А. В. Плетенец, В. В. Малин

Днепропетровский национальный университет им. Олеся Гончара

ОБ ОСОБЕННОСТЯХ СИНТЕЗА АЦЕТИЛЬНЫХ ПРОИЗВОДНЫХ АРЕНОВ

Доведено, що електрофільне іпсо-заміщення однієї з трет-бутильних груп у п-ді-трет-бутилбензолі в умовах реакції Фріделя-Крафтса відбувається більш селективно за ацетилування трет-бутилбензолу за тих самих умов.

Процессы электрофильного ипсо-замещения в аренах достаточно хорошо известны [1]. Как правило, процессы такого типа рассматриваются, как «побочные», которые приводят к сокращению выхода целевых продуктов.

Для получения ацетильных производных аренов чрезвычайно широко используется реакция ацилирования по Фриделю-Крафтсу. Несмотря на громадное количество работ, посвященных этой реакции, исследование особенностей ее протекания по прежнему остается актуальным.

Перед нами стояла задача наработки ацетильных производных аренов с целью дальнейшего окисления до арилглиоксалей. Одним из направлений наших

 ${\Bbb C}$ А. А. Анищенко, А. В. Плетенец, В. В. Малин, 2008