щений вміст вітаміну С, чим доведено підвищену харчову цінність створеного продукту.

Таблиця 1

	Кількість вітаміну С у страві, мг %		
	з цукром	з 10 %-вим розчином стевіозиду	
Молочне желе	2, 349	4,118	
Молочне желе із сиром	1,956	3,547	

Результати йодометричного титрування страв на основі молочної сировини

Бібліографічні посилання

- Збірник рецептур національних страв та кулінарних виробів: Для підприємств громад. Харчування всіх форм власності / О. В. Шалимінов Т. П. Дяченко, Л. О. Кравченко – К., 2005. – С. 278.
- Кондратюк Н. В. Розробка функціональних продуктів для дитячого харчування на основі стевії кримської. Тези доп. / Н. В. Кондратюк, О.С. Сергеєва, О. І. Нечепоренко // Наук. конф. молодих вчених, асп. і студ. – К., 2008. – С. 69.

Надійшла до редколегії 03.06.08

УДК 546.76

О. О. Чернушенко, І. Ромасенко, Н. Устименко

Дніпропетровський національний університет ім. Олеся Гончара

БУДОВА ЦИСТЕЇНОВОГО КОМПЛЕКСУ НІКЕЛЯ(II)

Синтезовано комплексну сполуку нікеля (II) з цистеїном. Порівняння фізико-хімічних даних показало, що бідентатна координація амінокислоти реалізується завдяки СОО- та -SH групам. Установлений тип координації можна уявити як модель зв'язування нікелю в біосистемах.

Синтез нікель-цистеїнату проводили у водних розчинах взаємодією солі нікелю(ІІ) нейтралізованою калій гідроксидом з цистеїном.

Отримана речовина погано розчинна в ефірі, дуже добре розчинна у воді та спирті. Координаційна формула для комплексу була виведена на основі даних ІЧ– спектроскопії (Specord 75 IR, таблетки KBr), електронної спектроскопії (СФ – 46, водні розчини концентрації $10^{-2}-10^{-3}$ моль/л) і кондуктометричних вимірювань (місток Р – 58), водні розчини концентрацією 10^{-3} моль/л в термостатованій комірці с платиновими електродами). Вміст нікелю в комплексі складає $15,01 \pm 0,32$ % (розраховано на формулу K₂[NiCys₂]: 15,70 %).

За даними електронної спектроскопії координаційний вузол має площинноквадратну структуру. Комплекс, що утвориться у водному розчині при зливанні NiCl₂· 6H₂O і цистеїну у молярному співвідношенні 1 : 2 при pH 7 має симетрію, що відрізняється від вихідної сполуки аквакомплексу нікелю(II) та гліцинового комплексу нікелю(II). Якщо порівняти його спектр із описаними в літературі [31], то можна зробити висновок про утворення цистеїнового комплексу із симетрією координаційного вузла D_{2d} – викривлений площинний квадрат.

У комплексі нікелю(II) із цистеїном відзначаються смуга переносу заряду при

[©] О. О. Чернушенко, І. Ромасенко, Н. Устименко, 2008

34500 см⁻¹, що вказує на координацію ліганду за допомогою Сульфуру меркаптогрупи та смуги при 21300 і 13000 см⁻¹. Можна припустити, що в розчині утвориться біцистеїновий комплекс із бідентатною координацією ліганду.

Величини молярної електропровідності цистеїнату нікеля ($C_{\text{комп}} = 10^{-3} \text{ моль/л}$, 15 °C, час до вимірювання 120 с) при рН 6,3 289 см²/Ом·моль, що відповідає потрійному електроліту.

Донорні центри ліганду у сполуці за даними ІЧ – спектроскопії наведені в таблиці 1. Данні ІЧ – спектроскопії свідчать про бідентатну координацію ліганду. Проте наявність трьох донорних центрів у молекулі ліганду та встановлена здатність усіх трьох груп брати участь у координації потребують певних доказів будови координаційного вузла біс-хелату. Дані про тип координації полідентатного ліганду можна отримати на основі коливальних спектрів, хоча їхне трактування для цистеїнатів металів і представляється дуже складним завданням.

Таблиця 1

[H ₃ Cys]Cl	K ₂ [NiCys ₂]	Віднесення		
—	470	v(Ni-N)		
532	580	ρ(COO-)		
616		v(C-S)		
1116	1028	v(C-CN)		
-	1390	v _s (COO ⁻)		
1476	—	$\delta(CH_2)+\delta(NH_3^+)$		
1590	1580	$v_{as}(COO^{-})+\delta(H_2O)$		
1730	—	v(C=O)		
2560	—	v(S-H)		
2800-3010	—	$\nu(\mathrm{NH_3}^+)$		
—	3200, 3300	v(NH ₂)		
3420	— v(О-Н)			

Віднесення донорних центрів ліганду за даними ІЧ - спектроскопії

Відсутність смуги V(COOH)=1730 см⁻¹ та проте незначна різниця ($V_{as}(COO⁻)$ -

 $V_s(COO^-) < 200 cm^{-1})$ характерна для некоординованого депротонованого карбоксилу. На пов'язану з металом аміногрупу вказують смуги поглинання з максимумами при 3200 сm⁻¹ и 3300 сm⁻¹, які приписуються валентним коливанням N-H, відсутність смуги деформаційних коливань протонованної аміногрупи та наявність смуги валентних коливань M-N. У той же час відсутність смуги поглинання при 2530 сm⁻¹ свідчить про зв'язану з металом S-H – групу.

Отримана комп'ютерна модель просторової будови цис- та транс-форм комплексу цистеїнату нікеля(ІІ). Значення розрахованих кутів і довжин зв'язків координованого вузла представлені у таблиці 2. Проаналізувавши значення кутів зв'язків, можна зробити висновок про площинно-квадратну структуру комплексу з невеликим викривленням кутів. Більше викривлення кутів зв'язку спостерігається в цис-формі комплексу, що можна пояснити напруженням у циклах цистеїну та розштовхуванням атомів Нітрогену в цисформі, про що свідчить збільшення кута зв'язку N(5) - Ni(3) - N(7) 96.45°. Кут зв'язку між атомами Сульфуру S(6) - Ni(3) - S(4) 80.71° значно менший 90°. При цьому енергія утворення має менше значення для цис-форми, що вказує на його більшу термодинамічну стійкість та більшу вірогідність утворення в розчині саме цього ізомеру.

Рис. 1. Будова цистеїнату нікеля (II): а – транс-форма Е = –2585.8959 а.о, б – транс-форма Е = –2585.8959 а.о

Таблиця 2

Геометричні параметри координаційних вузлів

Цис-форма цистеїнового комплексу нікеля(II)						
	0					
Довжини зв'язків, A						
Ni(5) - S(9)	2,21	N(6) - S(9)	2.83			
Ni(5) - S(8)	2.25	N(7) - S(9)	2.95			
Ni(5) - N(7)	1.87	N(7) - S(8)	2.91			
Ni(5) - N(6)	1,87	N(6) - S(8)	2.95			
Кути зв'язків						
N(6) - Ni(5) - S(9)	87,42°	S(9) - Ni(5) - S(8)	177,63°			
N(7) - Ni(5) - S(9)	92,37°	N(7) - Ni(5) - N(6)	179,56°			
N(7) - Ni(5) - S(8)	89.56°					
N(6) - Ni(5) - S(8)	90.64°					
Транс-форма цистеїнового комплексу нікеля(II).						
0						
Довжина зв'язків, А						
Ni(3) - S(4)	2,24	N(5) - S(6)	2,88			
Ni(3) - S(6)	2,23	N(5) - S(4)	4,09			
Ni(3) - N(7)	1,82	N(7) - S(4)	2,98			
Ni(3) - N(5)	1,88	N(7) - S(6)	4,05			
Кути зв'язків						
N(5) - Ni(3) - S(6)	88,56°	S(4) - Ni(3) - N(5)	169.01°			
N(5) - Ni(3) - N(7)	96.45°	S(6) - Ni(3) - N(7)	174.90°			
N(7) - Ni(3) - S(4)	94.25°					
S(6) - Ni(3) - S(4)	80.71°					

Бібліографічні посилання

- 1. Марченко З. Фотометрическое определение элементов / З. Марченко. М., 1971. С. 451.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений / К. Накамото. – М., 1966. – С. 219.
- 3. Беллами Л. Инфракрасные спектры сложных молекул / Л. Беллами. М., 1963. С. 337.

Надійшла до редколегіїї 15.05.08

УДК 546.76

О. О. Чернушенко, І. Ромасенко, Н. Устименко

Дніпропетровський національний університет ім. Олеся Гончара

КОМПЛЕКСОУТВОРЕННЯ У СИСТЕМІ Ni²⁺- H₂Cys –H₂O

Потенціометричним титруванням і спектрофотометричним методом вивчено комплексоутворення у системі Ni(II) – цистеїн.

Розчини вихідних сполук та комплексу цистеїнату нікеля(II) мають різне забарвлення. Виходячи зі спектрів поглинання в області 500 нм ні цистеїн ні нітрат нікелю(II) не мають смуг поглинання на відміну від цистеїнового комплексу (рис. 1 та 2). Тому вимірювання оптичної густини проводили при робочій хвилі 500 нм.

800

Рис. 2. Електронні спектри комплексів нікелю(ІІ): 1 – [NiCys₂]²⁻; 2 – Ni(NO₃)₂; 3 – [Ni(Gly)₃]⁻

Попередні досліди показали, що оптична густина у суміші нікель(II)– цистеїн різко піднімається, що вказує на утворення у системі комплексних часток. З кривої рис. З видно, що оптична густина в інтервалі рН 6–7.5 залишається постійною. При значенні рН>7.5 оптична густина зменшується за рахунок зв'язування нікелю(II) в гідроксид, тому далі проводили дослідження при постійній рН 6.1. На кривій залежності довжини хвилі максимуму від рН рис. 4, видно існування двох відрізків з постійним $\lambda_{\text{мах}}$, що вказує на утворення в цій області рН що найменше двох комплексних часток. Утворення першого комплексу починається в кислому середовищі рН 2.5–4.5, другого в області рН 4.5–8. При рН 1–2 комплекси не утворюються, вище 8 утворюється осад гідроксиду нікеля(II).

[©] О. О. Чернушенко, І. Ромасенко, Н. Устименко, 2008