Theoretical study on alkaline hydrolysis of trinitrotoluene: later steps

Authors

  • Liudmyla K. Sviatenko Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, 49000, Ukraine https://orcid.org/0000-0003-2145-707X
  • Sergiy I. Okovytyy Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, 49000, Ukraine https://orcid.org/0000-0003-4367-1309
  • Leonid Gorb Badger Technical Services, Inc., 4815 Bradford Dr, NW Huntsville, AL, 35805, United States https://orcid.org/0000-0001-7932-9105
  • Jerzy Leszczynski Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, 39217, United States

DOI:

https://doi.org/10.15421/081501

Keywords:

trinitrotoluene, DFT, hydrolysis, mechanism

Abstract

Alkaline hydrolysis is an effective method to destroy such the pollutant as 2,4,6-trinitrotoluene (TNT) in solution and in well-mixed soil. The mechanism of hydrolytic transformation of polynegative complex, which is one of the products of early stages of TNT hydrolysis, was theoretically investigated at the SMD(Pauling)/M06-2X/6-31+G(d,p) level under alkali condition. The studied process consists of more than twenty steps and includes a six-membered cycle cleavage and sequenced [1,3]-hydrogen migration and C-C bond rupture. The highest energy barrier is observed for interaction of nitromethanide with hydroxide. The most exothermic steps are C–C bonds breaking. As a result final products such as formate, acetate, ammonium, and nitrogen are formed.

Author Biography

Liudmyla K. Sviatenko, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, 49000

Department of Organic Chemistry, Ph.D., Doctorate

References

U.S. Department of Health and Human Services (1995). Toxicological profile for 2,4,6-trinitrotoluene (TNT). Retrieved from http://www.atsdr.cdc.gov/-toxprofiles/tp81.pdf

Dodd, D. E., & McDougal, J. N. (2002). Recommendation of an Occupational Exposure Level for PAX-21. AFRL-HE-WP-TR-2001-0103. Wright-Patterson Air Force Base: Air Force Research Laboratory.

Jarvis, A. S., McFarland, V. A., & Honeycutt, M. E. (1998). Assessment of the effectiveness of composting for the reduction of toxicity and mutagenicity of explosive-contaminated soil. Ecotoxicol. Environ. Saf., 39, 131–132.

Tchounwou, P. B., Newsome, C., Glass, K., Centeno, J. A., Leszczynski, J., Bryant, J., Okoh, J., Ishaque, A., & Brower, M. (2003). Environmental toxicology and health effects associated with dinitrotoluene exposure. Rev. Environ. Health, 18, 203–229.

Felt, D. R., Nestler, C. C., Davis, J. L., & Larson, S. L. (2007). Potential for Biodegradation of the Alkaline Hydrolysis End Products of TNT and RDX. ERDC/EL TR-07-25. Vicksburg: U.S. Army Engineer Research and Development Center, Environmental Laboratory.

Emmrich, M. (1999). Kinetics of the Alkaline Hydrolysis of 2,4,6-Trinitrotoluene in Aqueous Solution and Highly Contaminated Soils. Environ. Sci. Technol., 33, 3802–3805.

Emmrich, M. (2001). Kinetics of the Alkaline Hydrolysis of Important Nitroaromatic Co-contaminants of 2,4,6-Trinitrotoluene in Highly Contaminated Soils. Environ. Sci. Technol., 35, 874–877.

Mills, A., Seth, A., & Peters, G. (2003). Alkaline hydrolysis of trinitrotoluene, TNT. Phys. Chem. Chem. Phys., 5, 3921–3927.

Felt, D. R., Larson, S. L., & Hansen, L. D. (2001). The molecular weight distribution of the final products of TNT-hydroxide reaction. ERDC/EL TR-01-16. Vicksburg: U.S. Army Engineer Research and Development Center, Environmental Laboratory.

Felt, D. R., Larson, S. L., & Valente, E. J. (2002). UV-Vis spectroscopy of 2,4,6-trinitrotoluene-hydroxide reaction. ERDC/EL TR-02-22. Vicksburg: U.S. Army Engineer Research and Development Center, Environmental Laboratory.

Bishop, R. L., Flesner, R. L., Larson, S. A., & Bell, D. A. (2000). Base hydrolysis of TNT-Based explosives. J. Energ. Mater., 18(4), 275–288.

Saupe, A., Garvens, H. J., & Heinze, L. (1998). Alkaline hydrolysis of TNT and TNT in soil followed by thermal treatment of the hydrolysates. Chemosphere, 36, 1725–1744.

Thorn, K. A., Thorne, P. G., & Cox, L. G. (2004). Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR. Environ. Sci. Technol., 38, 2224–2231.

Davis, J. L., Nestler, C. C., Felt, D. R., & Larson, S. L. (2007). Effect of Treatment pH on the End Products of the Alkaline Hydrolysis of TNT and RDX. ERDC/EL TR-07-4. Vicksburg: U.S. Army Engineer Research and Development Center, Environmental Laboratory.

Hill, F. C., Sviatenko, L. K., Gorb, L., Okovytyy, S. I., Blaustein, G. S., & Leszczynski, J. (2012). DFT M06-2X investigation of alkaline hydrolysis of nitroaromatic compounds. Chemosphere, 88, 635–643.

Sviatenko, L. K., Kinney, C. A., Gorb, L., Hill, F. C., Bednar, A. J., Okovyty, S. I., & Leszczynski, J. (2014). Comprehensive investigations of kinetics of alkaline hydrolysis of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene) and DNAN (2,4-dinitroanisole). Environ. Sci. Technol., 48(17), 10465–10474.

Salter-Blanc, A. J., Bylaska, E. J., Ritchie, J. J., & Tratnyek, P. G. (2013). Mechanisms and Kinetics of Alkaline Hydrolysis of the Energetic Nitroaromatic Compounds 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN). Environ. Sci. Technol., 47, 6790–6798.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 (Revision A.02) [Computer software]. Gaussian Inc., Wallingford CT.

Hehre, W. J., Radom, L., Schleyer, Pv. R., & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York, USA: Wiley.

Zhao, Y., & Truhlar, D.G. (2006). A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 125, 194101–194118.

Wei C. (2005). Thermal Runaway Reaction Hazard and Decomposition Mechanism of hydroxylamine system. (Doctoral dissertation). Retrieved from http://pscfiles.tamu.edu/library/center-publications/theses-and-dissertations/chunyangwei.pdf.

Downloads

Published

2015-10-07