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Abstract
Introduction. We proposed a mathematical description of the flow of a Bingham fluid with transverse circulation in
arectangular channel of a worm machine. Materials and methods. As a material, we chose Bingham fluids with two
constant parameters - viscosity and fluidity thresholds. We overviewed the influence of the transverse circulation
on such characteristics of the visco-plastic flow as the size of the solid core, velocity of the core and the flow rate.
The flow in a rectangular channel is formed as a result of superposition of flows in two plane channels which are
crossed at right angles. Results. During the simulation of the three-dimensional flow of Bingham fluid in the channel
of a rectangular cross-section with transverse circulation, two basic elements are applied. The first one consists of
dividing the rectangle into a solid core and four rectangular sections of the viscous flow. The second element is that
the viscous flow in each of the plots is two-dimensional, that is, longitudinal and transverse, but depends on the one
coordinate. This means that such flows are equivalent to the flows with transverse circulation in the flat channel,
the core of the flow of the Bingham fluid has a rectangle at the intersection. This approach allows to calculate all the
basic characteristics of a complex three-dimensional flow in the explicit analytical form and analyze its dependence
on the boundary conditions, taking into account the influence of all eight longitudinal and transverse conditions
with any possible distribution on the boundaries of the channel. We proposed the calculation formulas for
determining the velocity of the core of the current, flow rates and the values of dissipation energy in the symmetric
form with respect to the coordinates. Conclusion. The mathematical description of the longitudinal flow of a
Bingham fluid with transverse circulation in a rectangular channel of a worm machine allows to carry out the
simulation of various flows of visco-plastic liquids and to determine the macro-kinetic characteristics at each point
of the channel.
Keywords: Bingham fluid; flow; circulation; model; channel; worm machine.

MO/IEJIIOBAHHA B’A3KOIJIACTUYHOI TEYII BIHTAMOBCBKOI PIZIUHU 3
MOMNEPEYHOIO LIUPKYJIALIEIO B MPAMOKYTHOMY KAHAJII YEPB’AIYHOI MAILIMHU

Enyappa B. Binenpkuii, ! Onena B. [leTpeHko, 2 lmutpo [1. CeMeH0K?

1 Xapkiecvkuli mopzogo-ekoHoMiuHull iHcmumym Kuigecbko2o HayioHa/1bHO20 MOP2080-eKOHOMIYHO20 yHIgepcumemy, npos.
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AHoTalia

3anponoHOBaHO MaTeMaTH4YHUI ONMHUC Tevii 6iHraMoOBCHbKOI PiAVHY 3 IONEPEYHOI0 HUPKYJIAILIEI0 B NPAMOKYTHOMY
KaHaJli yepB'A4YHOi MamMHU. Ik MaTepian o6paHO GiHraMoOBCbKi PiAMHM 3 NOCTIHHMMH JBOMa NmapaMeTpaMu -
B'AI3KICTI0O Ta MNOPOroM TeKy4ocTi. Po3rjisAaHyTO BIUIMB mNomepe4yHol NHUPKY/AALii Ha Taki XapaKTepHMCTHMKHU
B'I3KOIJIACTMYHOI Tedyii, 1K po3MipH TBepAOro sApa, INBUAKICTD sAJpa i BUTPATH piguHM Tedii. [Ipu MoaenoBaHHI
TpuBUMipHOi Tedii GiHramiBcbKOi piAMHM B KaHa/i NPSMOKYTHOrO MNONEpPeYyHOro mnepepisy 3 mnomnepeyHol0
IMPKYJIAIi€10 3aCTOCOBAHO JBa OCHOBHHUX eJjieMeHTH. [lepimnii moJisira€ B po36MBLi NPAMOKYTHMKA HAa TBepJe AP0
Ta YOTHMPH NPSMOKYTHI Ai/IAHKU B'A3K0i Tedii. /Ipyruii eJeMeHT moJjiAra€e B TOMy, 10 B’'si3Ka Teyifd y KOXHiil i3
AIJISHOK € JBOMipHO10, TOGTO 03/0BKHbBOIO i MONEePeYHOIo, ajie 3a/IeXKUTh Bij oAHi€l koopauHaTu. Lle o3Hayag, mo
Taki Tedii eKBiBa/IeHTHI TeuifiM i3 monepe4YHO0 BUPKYJIALi€10 B IVIACKOMY KaHaJIi, AAPO Tedii 6iHraMoBCbKOi pigHI
Ma€ B MepeTHHi NpAMOKYTHMK. [JlaHUH mifgxix A03BoJIsIE€ B ABHOMY aHAJITUYHOMY BHUJi OGYMCJIUTH BCi OCHOBHI
XapaKTepUCTHUKM CKJIaJHOI TpUBHMMIipHOi Tewii W npoaHaiisyBaTu ii 3ajexHicTh BiJ rpaHMYHUX YMOB i3
ypaxyBaHHAM BIIMBY YCiX BOCbMHU N03/0BKHiX i NonepeyHUX YMOB i3 6yAb-IKUM MOK/IMBUM iXHIM po3no/ijioM Ha
rpaHuUIsX KaHaay. 3anponoOHOBAaHO PO3PaxyHKOBi GopMysiu AJ11 BU3SHAYEeHHS BUAKOCTI siApa Tedii, BUTpaTH Tedii,
BeJIMYMHU eHeprii Aucunanii B CHMEeTPUYHOMY BUIJISAAI BiJHOCHO KOOPAMHAT.

Karwuosi cnoea: 6iHraMoBCbKa pifiMHa, Tedis, HUPKYJsLis, MOJieJb, KaHaJl, YepB'ssiyHa MalllMHa.
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MO/IEJIMPOBAHUE BA3KOIIJIACTUYECKOTO TEYEHUSA BUHTAMOBCKOM
KHUAKOCTH C IIONEPEYHOHU HUPKYJIAUHUEHU B IIPAMOYTOJIbHOM KAHAJIE
YEPBAYHOM MAIIIUHEI

3ayapa B. beneuxuii,! Enena B. [leTpenko,? Imutpuii [1. CeMmeH0K?
1Xapvkosckull mop208o-3koHoMuUeckull uHcmumym Kueecko2o HayuoHa/1bHO20 MOP2080-IKOHOMUUECKO20 YHUB8epcumema,
nep. Omakapa fApowa, 8, Xapvkos, 61045, Ykpauna
2XapvKkoeckull 2ocydapcmeeHHblll yHusepcumem numaHusl U mopzoeAau, ya. Kaoukosckas, 333, Xapvkos, 61051, YkpauHa

AHHoTanuga

HPEAHOXCEHO MaTeMaTH4YeCcKOoe ONMHCAHHEe TeYeHHSA GHMHraMOBCKOH KHUAKOCTH C nonepelmoi/’l I.ll/lpKyJIH].ll/Ieﬁ B
npAMOYroJibHOM KaHaJie ‘lepBﬂ‘lHOl‘/'I MalluHbI. B KauecTBe MaTepuaJja Bl:lﬁpal-lbl OMHraMoBCKHE KHUAKOCTHU C ABYMA
MNOCTOAHHBIMU NNAapaMeTpPaMHU - BASKOCTHIO U TIOPOIrOM TEKYy4€CTH. PaCCMOTPEHO BJIMAAHUE nonepeqﬂoifl LNUPKYJIALHUHA
Ha TAKHE XaPAKTEPUCTUKH BA3SKOIIJIACTUYECKOIo Te4€HHUA, KaK pa3dMepbl TBEPAOro A4pa, CKOpOCTb AZpa U pacxoj
KHUAKOCTH TeEe4YEeHHUs. le/l MOJAE/IMPOBAHUHN TPEXMEPHOT0 TeYeHUus OHMHIaMOBCKOMH KHUAKOCTH B KaHaJie
npAMOYToOJIbBHOTO IIONEpeYHOro ce4eHusa C HOl'lepe‘lHOﬁ IIP[pKlefl].ll/leﬁ NpUMEHEHblI ABA OCHOBHBIX J3JIEMEHTA.
HepBblﬁ 3aK/IlD4YaeTcda B p336l/IBKe NpAMOYroJIbHUKA Ha TBepAo0e€ AAPO0 U YeThbIpe NPAMOYTroOJIbHbIX YIYAaCTKA BA3KOIo
Te4YeHUs. BTOpOﬁ 3JIEMEHT COCTOUT B TOM, YTO BA3KOE€ TEYEHHE B KA’XKAO0M U3 YIACTKOB ABJAETCA ABYXMEPHBIM, TO
€CTh NpOoAOJIbHBIM H IIONI€peYHbIM, HO 3aBUCUT OT OAHOﬁ KOOpAHUHATBI. 3To O3HavyaeT, YTO TaKHue Te4YeHUusAa
3KBHUBAJIEHTHbI Te4YeHHUAM C l'lOl'lepe‘-lHOﬁ l.ll/IpKleHI.U(lef;l B IUVIOCKOM KaHaJie, AAp0 Te4YeHHus OMHIraMOBCKOM
XKUAKOCTH HMMeeT B CeYeHHUU NpPAMOYroJIbHHUK. ﬂaHHblﬂ nmoaxoa Imno3BoJideT B ABHOM aHAJIMTH4YECKOM BH/E
BbIYHUC/JIATD BCe€ OCHOBHbI€ XAPAKTEPHUCTHKH CJ/IOKHOI'O TpEeXMEepHOro Te4YeHHusA U NPOaHAJIM3UPOBATH €ro
3aBUCHUMOCTb OT rpaHUYHBIX ycnoanﬁ C y4€eTOM BJ/IMAHHUA BCE€X BOCBMH NPOAOJIbBHBIX H IONEPEeYHbIX YCJIOBl/lﬂ C
JIIOGBIM BO3MO:KHBIM HX pacnpeae/jiecHHeM HaA TIpaHULAX KaHaJsia. HpeAJIO)I(eHbl pac4yeTHbIe (l)OpMyJ'lbl A
onpejejieHUA CKOPOCTHU AJpa TedeHUd, pacxoaa Te4YeHUd, BeJ/IMYUHbI JHEePpruu AUuCCMnanuu B CHMMETPUYIHOM BHU e

OTHOCHUTEJ/IbHO KOOpAHUHAT.

Karouesblie ci108a: GUHTraMOBCKasi KHUJKOCTb; TeHYE€HUE; UUPKYJIALUA; MO eJib; KaHaJl; YepBAYHAA MalllMHA.

Introduction

In the food and chemical technology competent
instrumentation plays an important role in the
processing of raw materials. Machines and
apparatus, suitably designed and constructed, are
capable of carrying out the corresponding
processes as close to the laboratory conditions as
possible.

The laws of the flow of high viscosity materials
lie at the heart of many technological aspects of
processing the raw food materials. The
characteristics of the flows of high-viscosity non-
Newtonian materials are fundamental to the
proper conduction of such processes.

Such movements generate fields of velocity and
shear stress, which act as a driving force and
means, which effect the materials and ensure the
progress of mechanophysical and
mechanochemical transformations [1-3]. A
movement in which the fields of velocity and
stress are generated can not be provided by the
pumps due to the high viscosity of the processed
materials.

For this purpose the worm machines,
specifically designed to influence such materials
[4-8] are used in industry. These machines
combine the ability to move material with the
ability to mix it. These two abilities are
prerequisites for effective mechanophic and
mechanochemical effects on the material.

Analysis of recent research and publications. As
a rule, the transportation ability and the ability of
the force (of the shear) impact on the material
contradict each other to a certain extent. To
optimally combine these abilities, it is necessary to
choose the correct structure of the working
chamber of the worm machine, which is a
collection of serially connected channels with
different geometries. In the case of the use of two
or more worm machines this statement is
maintained, but it should be taking into account
that the channels communicate with each other [2;
4; 6].

The channels are distinguished by a large
variety of their cross-sections [3-5]. When
analyzing the motion in a channel of different
shapes, we must locate the calculations on a
channel with rectangular cross-section. Such
channel acts as the main one, often being the base
for various constructions. The flow in such
channel is associated with the real movement of
the processed material with the help of specially
assigned boundary conditions [1; 2; 8]. Namely, on
the boundaries of a rectangular channel, the
velocities of these boundaries are set, which have
both longitudinal (along the length of the channel)
and transverse components. The values of these
components are determined by the diameter of
the worm, the number of revolutions of the worm
and the angle of the helix [2;4; 6]. Boundary
velocities determine the velocity and stress fields
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within the channel, linking them to the main
constructive (worm diameter and pitch) and
mode (worm speed) characteristics of the worm
machine.Today the study of flow of visco-plastic
materials in the channels with different geometric
profiles is an actual problem and is of practical
interest. However, it should be noted that the
study of "simple" one-dimensional models do not
fully meet the real flow conditions so that it does
not take into account all the functional
relationship between the main parameters of the
process. Phenomenological models, which
describe these conditions in detail, appear to be
complex and consider only one longitudinal
direction of the flow, excluding boundary
velocities. This does not correspond to actual
conditions of processes in chemical and food
production [3-6;8]. Taking into account the
above-mentioned problems and considering the
difference in the pressure at the ends of the
channel and the moving boundaries, it should be
noted that to date, the simulation of the flow of
non-Newtonian fluids in channels with basic
geometry is quite an actual and completely
unsolved scientific and applied issue.

The purpose of this paper is to study the
motion of the Bingam material in a rectangular
channel with an arbitrary distribution of the
longitudinal and transverse components of the
boundary velocities. The choice of such material is
dictated by the significant practical importance of
such materials and their prevalence in food and
chemical technologies [3-5, 8-10].

Tasks of the researches

1. The study of macrodynamic and
macrokinetic parameters in the flow of Bingam
liquid in rectangular channels.
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2. Estimation of the influence of transverse
circulation on such characteristics of viscoplastic
flow as the dimensions of the solid core, velocity of
the core and the flow rate for different boundary
conditions.

3. Construction of a three-dimensional model
of a Bingam fluid in a channel of a rectangular
cross-section by various methods, which allows to
calculate in an explicit analytical form all the main
characteristics of a complex three-dimensional
flow and see how it depends on the boundary
conditions.

Materials and methods

In this paper, the Bingam material is
represented by a Bingham fluid, which has two
constant parameters - the viscosity p and the yield
point 7o. The modeling method is based on the
work of the authors, in which they overview the
method of flow analysis: the flow in a rectangular
channel is reduced to the flow in a plane channel
[11-15]. The flow in a rectangular channel is
obtained as a result of superposition of flows in
the two flat channels crossed at right angles [9;
16-18].

Results of the research and their

discussion

The cross-section of a rectangular channel and
the characteristics of the core of the flow are
shown on the Fig. 1a. The flow in a rectangular
channel with moving boundaries is assumed to be
three-dimensional and flat. This means that all
three velocity components - longitudinal vz and
transverse vx and vy depend only on the
transverse coordinates — x and y.

Fig. 1. Model of viscoplastic flow in a rectangular channel

The equations of the motion of a viscoplastic
fluid in stresses are as follows:

k=0
T —— —  —
K=o
b
0 ry +
8P_(’>’rzx sz_ +_ Y. i_FX
= T Yy = =
oz OX oy h a
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rg(;/f(y))=rzzx +rzzy +2rfx+2r22y, (1)

in which P is the pressure in the channel, Tjx=
xy,z are the components of the stress tensor;

+
”x(yy - dimensionless components of the
boundary contour of the flow core; a and h are the
width and height of the rectangle in the cross
section of the channel.

Equations (1) can be successively reduced to
flow equations in a flat channel, which has in the
cross section a strip parallel to the OX axis and in a
flat channel, the strip in the section of which is
parallel to the OY axis. Accordingly, the channels
are shown in the Fig. 1b. It is not necessary to
consider the flow in two flat channels separately,
due to the duality relations between them, it is
sufficient to consider only one of the two flows
[11; 19]. Without loss of generality, we consider
the flow in a flat channel, whose boundaries are
parallel to the axis ax. The stress tensor 7, is used
as the main component, relative to which the
remaining components are estimated. Proceeding
from this equation (1) can be transformed:

OP 01y 01y

+—LwprAFyy);
-y o kpyAFry);

Ty _ 00 10X

, 0v, oy’

2 2 2
T T T

o =rh |14+ 2| 2| 2| 42 ) |
sz sz sz

o = Wi+ Wi “W -
y +
Wiy —

, (2)

where V\/”J; Wy - are boundary longitudinal

velocities (see Fig. 1a); vk - is the motion velocity
of a solid core; signs "plus” and "minus” indicate
the position above and below the core for a
quantity with the index "y" and to the right and left
of the core for quantities with the index "x"
respectively.

From formulas (2) it folllows that for the
subsequent solution it is necessary to exclude all
the stress components except for 7, and also in
the first equation it should be expressed the
derivative of 1, in x in terms of the derivative of
T, in y. The derivatives with respect to these
variables are related by the relation g/ = x 5/,
where x = h/a [11; 17]. Estimates for the
components of the stress tensor are as follows:

W —W
Do = e T T TX (1 F )
Ty Wiy =t
+ —
Dy _ le +fo -Wi, (li}/i)z
y )

IEYVE: +
Ty Wiy —oe Wy~

+

x(y)
boundary velocities at the boundaries of a

where Wy, - are transverse components of the

rectangular channel parallel to the axes ox and oy
respectively. Using the relations (3), the system of
equations (1) can be written in the form
corresponding to the flow in a plane channel:

oP 01y 2 o ]
—= + vaAFr )P
oz 5)/ b K py( Ty )]

%o

Ty =+ ) (4
\/1+ KZ[(p§)2 + (eyi)z](n 7y)+ [m§ +ny P (LF }/;7')2]2

)

where pj is defined by formula (2), equals to the

multiplier which is formed by the boundary
velocities when estimating the ratio 7x/Tx in
formula (3), mj equals to the first addendum, nj

- equals to the second addendum, which are
formed by boundary velocities to assess the
relationship 74,/7, in formula (3). Equation
system (4) is solved in works of authors [10; 11].
[t is established there that the velocity of the solid
core v is a fractional-rational function of the

values 7y . Itis also established that the profile of
the longitudinal velocity v, depends quadratically
on the transverse coordinate y. The expressions
for ur and v, include three constants, after
elimination of which a system of two nonlinear

equations is obtained to find the values 7; . The
features indicated here are relevant purely to
longitudinal flow in a rectangular channel. The
results obtained for purely longitudinal flow can
be transferred to a flow with transverse
circulation, making corresponding changes in the
results of the authors [13]. Since the cause of
transverse circulation is the presence of
transverse components at the boundary velocities,

+

since in the case Wy, =0 there is no circulation;
and the following equalities hold 65=0, m;=0,
ny = 0. Then the system of equations (4) coincides

with the one studied previously [9; 10; 14]. It was
shown that the solution of the system of equations

for the boundaries of the core 7/; and ¥~ for
flow without transverse circulation is the sum of
two solutions for plane channels with sides in
sections parallel to the axes 0OX and OV
respectively. Such flat channels correspond to the
limiting values of the channel shape parameter
x=0and k= o The case k= 0 means that h=const,
a=o0; and the case x=oo means that h=og and
a=const. For the flow with transverse circulation,
the system of equations for calculating the values

Yy is written in the following form:
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Q-7 Wrry)®  _ 2uWy W)
1+«? pyd=7y) 147 oy L+7y) hdP/d¢,
é’h:Z/h'
vy Yy _
1+ 2 py(l 7y) B py(l+;/y)
To
+

\/1+K2[(p;)2 F O Ja- 0 +fmg +x2nr -y f (5)
+ %o .
\/1+K2[(p;)2 +(9;)2](1+ 7))’ +[m; +xn; 1+ y;)z]z
If the system of equations (5) is considered for
the case x=0, then this is equivalent to the system
of equations for a flat channel. This means that the
equations (5) for k=0 are a consequence of the

following system of equations, which after
elimination of the constants ¢;, ¢ are
transformed into equations (5) for k= 0:
h oP
R AL
2u 0Cy, H
LE +)2 athr +_h oP 2, 6yh7 )
2#64( ry)"+ L e =g ag( 7y) + Yy +C
Lo 8
Vy a*’cl—%y Yy o o, +Cy =17y
h op -y heci =W
2u 84“ h u
h op Cl+T°"h+c2’:v\/H*yi
2u 8¢, H
L il W (©)
S ;)2 Wi, —u
After carrying out a number of

transformations, which are cumbersome and are
not presented for simplicity, for the solutions of
equations (6), we end up with the following
expressions:

+ - + -
Toy +7 Wy, W)
Vil =0)=+ oy * %oy H Wy Ily . . (7
2dP/d¢,, 7 + 7oy
2hdP/d¢,|1— -0 "0y
2dP/d¢,

If there is no transverse circulation, then
7§ =75, since my turn to zero. Using the dual

nature of the values characterizing flows in flat
mutually perpendicular channels with a width h
and a, based on (7), we can immediately write

+
expressions for quantities 7'x for k= o

N Toy + 70, 1 Wi =W
7;(’(=°°)=‘23XP/d? e
* 2adP/dg,|1-—0 o
2dP/dc,
z
ga:g' (8)

Formulas (7) and (8) give a solution of the

+
system of equations (5) for values 7'y at x= 0 and
a similar system of equations for values y, , that

non

differs from (5) by changing indices "y" to indices
"x" and by changing x-1/K Wthh was not
presented before in order to avoid repetition. .
Next, we need to solve the system of equations
(5) for another limiting case: k= o, then, using
duality considerations, write the expressions for
75 (x =0). The system of equations (5) in the limit

k=ootakes the following form:

Loy Yrry _2p Wiy =Wy
Py Py a dpP/dg, )
+ _
7y 7y

pyA=ry) pyA+ry)
It can be shown that the system of equations
(9) is equivalent to one quadratic equation with

respectto 7’y . Omitting the long and cumbersome
transformations, the result of the system of
equations (9) can be written in the following form:

Wry _ 1, )+ |
+ 217 wy + (ot -
Py pyPy(py +py)

The specific of the solution (10) is the fact that
it does not depend on the transverse flow
characteristics, which are concentrated in the

values mj and nj. In other words, the values
yf(rc:O) depend on the transverse boundary
velocities, and the values ;/; (x =0) do not depend

on them. The general (not for this limiting case)

1

, Z_ﬂWn;—Wn}.
W a dP/dg,

wy

_ 2
GO CN  E
ey oy o) | Py es +py)

(10)

=+
dependency 7y on my and nj is present. This

can be verified if the system of equations (5) is
expanded in a series on the parameter 1/x near
the point k=0 (1/x=0). In the firstand subsequent
terms, such a relationship is present.In view of the
already mentioned dual property between ﬁ (x)

and y,(l/x), an expression for the values
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75 (x =0) can immediately be written down. To do

«_n

this, we need to replace all “x” indices with “y
indices in formula (10); also in the value 7z
(which replaces z,,) we need to replace the factor
1/a with factor 1/h; in the derivative of the
pressure, we must replace the variable {, with the
variable {,. Taking into account what has been
said, it is now possible to construct expressions for

7y (x) and y;(x) in the entire range of variation of

this parameter, relying on expressions (7), (8),

¥y (&) =7y (=0, Wy, Wiy, W)

To calculate the velocity of a solid core and the
flow rate it is sufficient to use formulas (7), (8),

(10) and its analogue for y;(x=0), and (11). To

calculate the dissipation energy density, we need
to add formulas for transverse (circulation) flows.
The velocity of the longitudinal flow in the regions
located between the boundaries of the solid core
7y and the boundaries of the rectangular channel

y=#h are the result of solving the first equation -
the flow equation in formulas (2). This equation
for the longitudinal velocity v, is a second-order
equation with respect to the single variable y. The
pressure gradient is constant in this case. If we use
the dimensionless variable &=y/h, then the
velocity profile v, is a square trinomial. The
velocity of the longitudinal flow v, for the regions
located between the boundaries of the solid core
7y and the boundaries of the rectangle with

coordinates x=#a is also a square trinomial
depending on the variable &.=x/a.

The boundaries between regions with the
dependence of the longitudinal velocity on the
variable &, and &, are the curves passing through
the vertices of the rectangle of the core and the
rectangle in the cross section of the channel. The
equations of these curves are given in the work of
the authors [9]. The flow calculation procedure is
reduced to calculating the costs in each of the four
areas shown in the Fig. 1a.

All these areas of the same type are trapezoids
with curvilinear sides. The total flow in the
channel is equal to the sum of the expenditures in
the areas indicated above and the consumption of
the solid core. The latter is equal to the product of
the area of the core by its velocity. As shown by the
authors, the flow rate of a longitudinal flow
without transverse circulation is a fractional-

1 P
V() =7 (= 0, Wik, Wi ) —=— + 75 (x = o0, Wi, Wb, W) ——
+ K 1+ x

(10) and its analogue for y, (x=0). Bearing in
mind that equations (5) and their analogue for y,
contain only a dependence on &2, it should be
concluded that the exact solution for equations (5)
and their analogues for y; depends only on 2.
Therefore, any interpolating formula based on the
limiting values (7), (10) should consist of factors
that depend only on &2, The simplest of the

corresponding interpolations has the following
form:

1 + by K .
+ 7 7y (=00, Wiy, Wip) ——

K l+x

(11)

rational expression including the values y; and
7y in the first to fourth powers. The flow rate of a

flow with a transverse circulation has the form
coinciding with the type of flow without
circulation. All the differences are concentrated in

the values y; and 7y » which, in accordance with

(11), contain the transverse boundary velocities
W, W, as independent arguments.
The velocity of the longitudinal flow with

transverse circulation can be written in the
following form:

ryAFE) .

v, -————mm—— ) T —-— ly
L2ud, 1+x%pyAF yy) 10, 1+x% py(AF yy) W
JHyy 6 <L -1<E <y,

g2 - *
pro B P 1-4 L3P 7lFr) e

2u 0L, 1+ (U kD) pEAF yE) 1 08, 1+ k2 pEAF 7Y
J+ oy <E<L,- —1<E <y,

X z z
G=ri &=t b= G

The velocities vy and v, of the transverse flow
in a rectangular channel should also be sought in
the form of a square expression of the variables &
and §,. The corresponding transverse gradients
are the sought values, in contrast to the
longitudinal pressure gradient cP/cz, which is an
independent constant value. To find the
transverse velocities and pressure gradients, we
must write down the equations of transverse flow
for the same regions as for the longitudinal flow.
These equations have the following form:

oP Ot ot or
= W T a2 2 1202 4272
ax ax ay 62 ZX zy XX Xy

E: 0Ty . 0ty . ory, . (13)
oy  oOx oy 0z

(12)
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For definiteness, first consider transverse
flows for regions defined by the inequalities

be ¢, and the pressure will depend on the variable
& Directly from the Fig. 1a follows that the ratios

yy <& <1, -1<& <y;. In this case, the ofthe components Tu/Ty, Tx/Tx are equal to:
independent variable for the flow velocity v; will
e ool KWEWRATR)
Ty Ovgloy+dug 1ox W, +x? (W -WL)AFyy)° sy s
+ K + “WI)AF +
Ty ov; 10X (W||x ||x)( )/y) Esziy(lﬁff). (14)

Ty OUEIOy+vEIax W, +i? Wiy —WE) (LT y5)?

If the values of 7. and 7., expressed in terms of
Ty in accordance with (14) are substituted into the
first of equations (13), then we obtain a partial
differential equation connecting ¢P/ck and partial
derivatives of 1. Using the estimates &/ck~k3/Jy;
o/ cz~kmd/ &), where kxp=h/L for the value of 1y,
the following equation is obtained:

Py Oty

= 1+ 2 pl (LT yE) + ¥, (15
aé,a aggh[ K pyx( yy) Kthpzy( 7y)] ( )

where P; - is pressure in regions above the flow

core.
For the regions defined by the inequalities

75 <& <1 and -1<¢, <y, , we must consider the
second equation of motion (13). In this case, the
independent variable for the velocity vy will be &,

and the pressure will depend on the independent
variable ¢,. From the arguments given here, it
follows that the stress components 7, and T,
should be expressed in terms of the component 7yx.
It is easy to do this as 1,, = -7« due to the equation
of flow conservation and the ratio 7,x/7, is
calculated the same way as in the second formula
(14). We can find the corresponding relationship
without calculation using the duality relationship.
To this end, we need to replace the index "y" with
the index "x" in the formulas (14) and vice versa,
and the value x with 1/x%; and introduce the

notation (1/«) piy(1F 7)), for the ratio 7,,/Ty, and

the notation (1/x)p,(1F yy)for the ratio Ty,/T

respectively.

Returning to equation (15), it should be solved
with boundary conditions different from the
boundary conditions for the longitudinal velocity
v.. The transverse velocities at the boundaries of
the rectangles in the section of the channel must
be equal to the transverse velocities of the
boundaries. On the surface of a solid core, the
transverse velocities should be turned to zero.

From formula (15) for pressures Py and

pressures P for regions to the left and right of the
core it follows that P/ =P/ (¢,), Py =P (&,). The

variables {, and &, vary in the following limits:

Vx S& <l -1<8<yy; 1 SCa<l; -1 <y
Consequently, the velocities of the transverse flow
must depend on the values dP; /d¢, u dR/d&,

the same way as on the parameters we are
seeking. To find unknown transverse pressure
gradients, we should wuse these auxiliary
representations. The flow between the solid core
and the channel boundaries in the transverse
plane can be imagined as a flow in four
successively connected channels of different
widths and lengths with moving and fixed
boundaries. In each of these channels, a total flow
consisting of a flowing current and a pressure flow
is realized. The flowing current is caused by the
movement of the corresponding boundary, and
the pressure flow is caused by the transverse
pressure drops. The four mentioned channels
form a closed channel. This means that the
pressure difference along the contour of the four
channels must turn to zero. Since the transverse
channels are sequentially connected in a closed
loop, the costs of the transverse currents in each
channel are equal to each other. The condition for
the uniformity of all expenditures gives three
conditions for the unknown values of the pressure
gradients. Another condition appears due to the
fact that the pressure drop along the closed circuit
of the channels is zero. An additional unknown
parameter is the pressure at the starting point of
the closed contour (it is also its final point). The
choice of the starting point is arbitrary. It does not
affect the results. Below, the point with the
coordinates {,=1 and &,=1 is used as the initial
point for pressure. To determine the pressure at
this point, the following condition should be used:
the average value of the pressure in the cross-
section of the rectangular channel must be equal
to the value of the longitudinal pressure in this
section [9; 17]. The longitudinal pressure is a
linear function of the longitudinal coordinate z
and the boundary conditions at the ends of the
channel. The longitudinal pressure is set
independently by indicating the pressure values
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Py and Py. It follows that the transverse pressure is
a function of the longitudinal coordinate z, the
values Py(z=0) and Pi(z=L), and the values of the

transverse velocities of the boundaries Wyi , W

Another group of parameters that determine the
behavior of the transverse pressure is associated
with the characteristics of the longitudinal flow.

These characteristics are: »,, Vo Pyx» Pz, Which,
in turn, depend on u4 7, W”f, , W”i .Thus, the
transverse pressure depends on all the boundary
velocities and the coordinates of the boundaries of
the solid core and the shape parameter x. After
these remarks, we can start deriving the equations
for the lateral pressure and the flow. All the above
is shown on the Fig. 2.

The solution of equations (15) for vy (&,) and

its analogue for u?(fa) in the above-mentioned

limits with the boundary conditions discussed
above is obtained after a series of cumbersome
transformations and double integration over the

transverse variable &, for vy and ¢, for zﬁ .
+
«— Wj

P(-a, h)<—— PR/ (y) —>P(a, h)

1 1
Wi | & = | Wi
Al Ay
iE e
P(-a, -h)y<—P;(y)—> P(-a, -h)

«— W,
Fig. 2. Characteristics of the flow core

The result is as follows:

R e s Zga (52— xax )0 —:h)]i—f(y(f“ - 2
u;@a)—%“ Sl(ﬁ - T ! —i(*(f* 1,
RY = pjs+ =2 piy 5 8% = +Lzapxi;

zczhzg; Ky % (16)

Calculation of the flow rate in each channel is
performed by integrating the velocity vy (&,) in

the intervals (yy, 1) and (-1, y, );and velocity

vy (¢,) in the intervals (7, , 1) and (-1, y; ). The
results of integration are the following:

I e 1 Py 1237 +27° @y Aoyy)” | WA
n 2y1+1c R*(L-7y) 04, 3 2 2 .
h2 1 P, 1-37,2-25,° (L-7,)@+7;)? | Wi,h
_hju de, - ! y =0 e+
2u 1+ kK°R™ A+7y) 0<, 3 2 2
L 1 0P 11-3y2+2y° (1+y:)(1—7:) wrx
f “ou 1 0 3 2 t+r);
7y 'ul+ ( x) é:h
2 - -2 -3 - -
. 1 P~ |1-3y72-2 1—y2) L+ W/,
x _aJ' dé/a 2 - I: 7x3 7 x _( 7x); 7x) :l 1xa (1+ x) (17)
'ul+ ST+ 7y) Sh

The fact that the channels of transverse
circulation form a closed contour, and the
transverse pressure itself must be continuous at
the junctions of the channels, leads to the
following relations between the pressure values:
R (-)= B, (+h), P;(~h)= P, (-a), P, (+a)= P{(~h)

Py (+h)=P/(+a). From equation (15) and its
analogue for v} (¢,) it follows that the dependence

of the pressure on the corresponding coordinates
along the transverse channels has the following
form:
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N oPy .
I:)y =R +§(é’a -1);
_ P, L 0P
Pi=h-2 ’ — (6D
8§a 6§h
= - P/
Py =Ry -2 2% G D;
aga agh
P - OP- +
Pf=P-2— —2apx +2—Y apx (& +1),(18)
aga agh aga §

where Py - is the pressure at the initial point with
coordinates (x=a, y = h).

The average value of the transverse pressure
along a closed contour enclosing a solid core is
defined as the sum of the integrals over the
variables &, and {, in the appropriate limits. When
integrating, the terms with &, and {, give a zero
contribution. Therefore, the average value of the
transverse pressure is:

oP/f oP, - +
2|:>0_3+4/( y +1+2K‘ y _1+3K@i+ x OP —R(2)
l+x 05, 1+x 05, 1+x 0& 1+x 0&,
P« - R
R(2)=—"—"Z+P;. (19)

The condition that the pressure difference
along the closed contour equal to zero imposes the
following restriction on the gradients of the
transverse pressures:

~ Py . P, oP; .\ oP;

0Ca 0Cy Ogy  Ogh

The set of equations (19), (20) and also the
three equations obtained by equating the
expressions for the expenses given by formulas
(17) compose a system of five linear equations for
determining five unknown variables 6P, /8¢,,

-0. (20)

oP;10&, and Po. Solving these equations and

¢ lovY y
o]

.
Iy

ay]dy2a+j[

substituting the results to formulas (16) we can
obtain closed expressions for the rates of
transverse circulation. After obtaining the

velocities vy (&) and ui(ga) it is possible to

calculate the energy of dissipation of viscoplastic
flow in a rectangular channel taking into account
the transverse circulation. The calculation
procedure is based on the fact that in each of the
four regions to which the rectangle in the channel
section is divided, there is a flow that has
longitudinal and transverse components. For

regions above and below the core these are v; (&)
and vy (&,); for regions to the left and to the right
of the core these are v; (£,) and ui(g’a). It should

also be taken into account that because of
equation (19), it seems that an additional

dependence of the values v, and o on the

y
longitudinal coordinate z also arises. Therefore,
the amount of dissipation energy € per cross-
section of a rectangular channel must include

terms that contain from (0v; /0z)? and (0 Uj /07)2.

In fact, there is no such dependence. Equations for
consumption include only pressure gradients over
transverse coordinates such that the conditions of
constant flow and zero pressure variation along
the closed contour make up four independent
equations for the four gradients. Therefore,
although the pressure in the channel depends on
all the coordinates x, y, z, the kinematic values
depend only on the x and y coordinates.
Considering these considerations, the value can be
represented as the following sum:

_ 2
J dx-2h+ j(%’;} dx-2h+

—a

(21)

1{2v) 4y dy.2 +2o|2hr;augzolzh
+F{+[5'YJ y a+jh(ay] y a+j[ J X :L[WJ x-2h.

The value of the longitudinal flow rate is
calculated for each of the regions separately and is
also summed up. As a result, the following

expression is obtained for consumption V, :

h Iy I
V, = juzydy 2a+ quydy 2a+ quxdx 2h+ J.uzxdx 2h,
Fy ]‘X -a

(22)

where v,, are defined by formulas (8), and Uy -

are defined by their analogues based on duality
principle.

Conclusion

Summarizing the results, we can conclude that
the model of a three-dimensional flow of a
Bingham fluid in a channel with a rectangular
cross-section has been constructed with the use of
two basic techniques. One technique is to divide
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the rectangle into a solid core and the four
rectangular areas. The second method is that the
viscous flow in each of the regions is two-
dimensional - longitudinal and transverse, but
both currents depend on the one coordinate. This
means that such flows are equivalent to flows with
transverse circulation in the flat channel. An
additional technique arising from the first two
ones is that the core of the Bingham fluid flow has
arectangle in its section. This, of course, should be
considered as the some approximation to the real
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