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Abstract.

The problem of heat transfer of non-Newtonian fluids in the channels of chemical-technological equipment is
considered. A mathematical model is proposed for determining heat transfer characteristics during the flow of
Bingham fluids, generalized displaced fluids and power fluids in channels of different geometries. During the
Bingham fluid flow, for the calculation of heat transfer coefficients, the convective temperature transfer equation is
given in the approximation of the thermal boundary layer so that only the transverse derivative with respect to y is
stored on the right side, and the x coordinate is assumed to be aligned along the tangent component of the fluid flow
velocity. Nusselt numbers are determined by the derivatives of the tangent velocity on the walls of the channels and
at the boundaries of the solid core. If the tangent of the fluid velocity on the wall has two components, then the
velocity, the derivative of the Nusselt number, is determined through these components in accordance with the
Pythagorean theorem. When a generalized shear fluid is used to calculate the Nusselt numbers, it must be taken
into account that in a flat channel with longitudinal and longitudinal-transverse flows there are two heat transfer
coefficients, and in a rectangular channel there are four heat transfer coefficients. The determination of the heat
transfer coefficients of a power-law fluid is considered only for longitudinal flow in a flat channel and is carried out
similarly to the calculation procedure for Bingham and generalized-shear fluids. The obtained expressions, when
carrying out engineering calculations, allow us to calculate the corresponding heat transfer and heat transfer
coefficients during the flow of non-Newtonian fluids in the channels and with the environment.

Keywords: non-Newtonian fluid; flow; heat transfer; pipe; channel; Nusselt number.
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AHoTalif

Po3r/isiHyTO Npo6/ieMy TelJIOOGMiHY HEHBHTOHOBCKIX pPiijUH B KaHa/IaX XiMiKO-Te€XHOJIOTiYHOro 06GJ/aJHaHHA.
3anponoHOBAaHO MaTeMaTH4YHY MoJe/b BH3HaYyeHHsA TEIMJIOOGMiHHUX XapaKTepPHUCTHK NPH Tedii 6iHraMoOBCbKHX,
y3araJibHeHO-3pylLleHHMX Ta CTelleHeBUX PiMH B KaHaJjax pisHoi reoMeTtpii. [Ipu Teuii 6iHraMoBCcbKOI piAUHU a5
o6uMciIeHHA KoeQillieHTIiB TenoBigJadyi piBHAHHA KOHBEKTHBHOTO IIepeHOCY TeMIepaTypH NpHUBeJEeHO B
Ha6J/IMKeHHI TelJIOBOro NPpMKOPAOHHOIO APy TakK, L0 B NpaBiil YyacTUHI 36epekeHa TiJIbKU NMonepevyHa noxigHa
1o 3MiHHi| y, a KOOpAMHATA X BBAXKAETHCA COPAMOBAHOI0 Y3/0BX JOTUYHOI KOMIOHEHTH IUBUAKOCTI Tevii piguHu.
Yucaa HyccesbTa BU3HAYalOThCAd NOXiJHUMH JOTHYHIill IIBUAKOCTI HAa CTiHKaX KaHaJIiB i HaA KOpAOHAX TBepJAOro
aapa. KO0 AOTHYHA WBHUAKOCTI Teuii piAiuHM Ha cTiHLi Mae€ ABi ckIazoBi, TO IBHAKICTh, MOXigHA 4MCIa
HyccesbTa, BU3HAa4Ya€ThCA Yepes Li CKIaA0BI BignoBigHo 10 Teopemu Ilidparopa. [Ipu Teuii y3arajibHeHO-3pylIeHOL
piauHu A1 o64ucaeHHsA yucena HyccesbTa He06XiJHO BpaxOBYyBaTH W0 B IJIOCKOMY KaHaJli IpU MO3A0BXKHIN i
NO3J0BXKHbO-NIONEepevYHOill Tewisix € ABa koedilmieHTa TemaoBiAAayi, a B NPSAMOKYTHOMY KaHaJdi - 4YOTUPHU
KoedinieHTa TenoBiaggayi. Bu3HayeHHA KoeQinieHTIB Tenm1oBiAAaui cTenneHeBOl PiAMHU PO3IJIAHYTO TiIbKU AJISA
NMO3J0BXKHbOI Tedyil B MJIOCKOMY KaHaJji i NIPOBOAUTHCA aHAJIOTiYHO METOAUKU OGYUC/IEHb AJsA GiHramMoBCKOi Ta
y3arajibHeHO-3pyleHoi piauH. OTpuMaHi BHMpa3sH, IpU NpPOBeJeHHi iHKeHepHHX pO3paxyHKiB [03BOJISIOTh
BHM3HBYATH BiANOBiAHI KoedinieHTH TenaoBigaayi i Tenonepeayi npy Tevii HEHbIOTOHOBCKIX PiJUH B KaHa/1ax i 3
30BHIIIHIM cepeAOBUIIEM.
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AHHoTanuga

PaCCMOTpe}la l'lp06JIEMa TEeIJIOOOMEeHAa HEHbBITOHOBCKHX )KPIAKOCTel\;l B KaHa/lIaX XHWMHKO-TEXHOJIOTHYeCKOoro
060py,qonaﬂm{. HPE/I[JIO)KEHa MaTeMaTHu4ecCKass MOoJeJib OoInpeje/ieHUuA TEeNnJI006MEeHHBIX XdPaAKTEpUCTUK MNPpH
Te4YeHHUHn 6I/lHI‘aMOBCKPIX, 0606H.IEHHO-C/I[BHFOBLIX N CTENEeHHbIX )l(I/lAKOCTeﬁ B KaHaJiax paSHOl‘/'I reoMeTpuu. HpI/l
Te4eHUH GHMHIraMOBCKOM KHUAKOCTH A1 BbIYHUC/ICHUA KOB(l)(l)l/II.lI/IEHTOB TEeIJIOOTAA4YU YPAaBHEHHE€ KOHBEKTHBHOTO
nepeHoca remMmneparypbl nNnpuBejeHo B HpHﬁJIl/I)KEHPII/l TEIJIOBOro MOrpaHU4YHOro cjofd TakK, 4YTO B npaBoi/i YacTu
COXpaHEHa TOJIBKO nomnepevHas npou3BoaHada 1no HEPEMEHHOﬁ Y, a KOOpAHUHATA X CYUTAETCA Hal’lpaBJIeHHOﬁ BJ0J1b
KacaTeJJbHOM KOMIIOHEHTbDI CKOpPOCTH TE€YE€HUA XKHUAKOCTH. Yucaa Hycceana onpeae/aIuTca Npou3BOJHBIMUA
KacaTeJIbHOH CKOPOCTH HAa CTEHKAX KaHAJIOB U HA IrpaHULlaX TBepAOoro aapa. Eciau KacaresibHas CKOPOCTH T€YEHUA
XKHUJAKOCTH Ha CTEHKe HuMeeT JBe COoCTaB/idniue, TO CKOpPOCThb, NIPOU3BOJAHAA 4YHUC/IA Hycceana, ornpejesdaerca
yepe3 3TU COCTABJIAKIIHE B COOTBETCTBHUHU C TEOPEMOi’I l'lu(])aropa. HpI/l Te4YeHUuunu 0606HLEHHO-C,ZIBPII‘OBOI‘;I KHUAKOCTH
AJIA BbBIYHUC/IEHHUA, 4YHCEJ HycceﬂbTa, HeOﬁXOAHMO y4YuTbIBaTh, YTO B IIVIOCKOM KdHaJie INpU NpoAOJIbBHOM H
NpoAOJIBHO-IIONIEPEYHOM T€YE€HHUAX €CTh ABa KOB(I)(I)HI(HEHTH TEIJIOOTAAa4H, 4 B IPAMOYroJIbHOM KaHaJie — YeTbIpe
KOS(l)(l)PIIlI/leHTa TEeNnJIOOTAAYH. Onpeaeﬂe}me KOB(I)(])H[(I/IEHTOB TEenJiooTaadu CTeNeHHOM KHUAKOCTH paCcCMOTpPEHO
TOJIBKO AJIA NPOJAOJ/IBHOTO T€YE€HUA B IVIOCKOM KaHaJ/ieé U NPOBOAUTCA AHAJIOTHYHO ME€TOAUKH BBIYHCJICHUH AJIA
OMHIraMOBCKOH H 0606meHHO-CABl/IPOBOl7[ )KI/IAKOCTeﬂ. HOJIy'-leHHBIe BbIpaXXe€HHs, IMPHU NPOBE€AEHHU HHXKXEHEPHbIX
pacdyeToB MNO3BOJIAIOT BBbIYUC/JIATH COOTBETCTBYHOLIHE KOI—)(‘)(])Mlll/leHTbl TeIVIoOOTAa4Yu M Telvionepejgayu INpUu

T€4Y€HUU HEHbIOTOHOBCKHX )KM,CI;KOCTeﬁ B KaHAaJIaX U C oxpy;xalomeﬁ cpep;oﬁ.
Kurouesvle ciosa: HEHPIOTOHOBCKAS KHJIKOCTh; TCUCHUE; TEII000MeH; pr6a; KaHaJl, YuCJIo HYCCGJ'ILTa.

Introduction

Heat exchange plays an important role in the
processes of the chemical and food industries. A
detailed study of the structure of heat flow allows
a high level of organization of technological
processes. It is known that most liquids used in
the production of chemical and food products
have an abnormal flow character, so studying the
process of heat exchange of non-Newtonian fluids
is very relevant. Nowadays, there is little
scientific work on the study of heat transfer in
non-Newtonian fluids, wusually theoretical
analytical studies [1]. The nonlinearity of the flow
of non-Newtonian fluids creates additional
difficulties in solving the problems of convective
heat transfer, so very often researchers solve
problems in a simplified form and, as a rule, for
the laminar mode of motion [2]. It should be
noted that turbulent flow conditions are more
favorable for the intensification of the heat
transfer process, but given that most non-
Newtonian fluids are high molecular weight
fluids, creating flow turbulence under real
conditions is quite a difficult task. When forming
a mathematical task for the study of convective
heat transfer, a technique is used that leads to the
compilation of a complex system of equations. It
includes equations of rheological state of
material, equation of continuity, energy and
equation of thermodynamic composition of liquid
[3]- The solution to this problem is the functions

that satisfy the specified equation and defined
boundary conditions. The boundary conditions
include initial conditions consisting of the
distribution of velocity, temperature, etc. in the
initial time period. If fluid flow and heat transfer
are stationary, then the initial conditions are no
longer present. The boundary conditions include
the geometric shape of the system and the
directions of movement and heat transfer. The
fluid flow in the pipe is limited by the inner
surface of the walls, the inlet and outlet sections,
which also constitute boundary conditions. As a
rule, the boundary conditions for velocity on the
wall surface are set without taking into account
the motion of the fluid. The boundary conditions
for temperature are formed on the basis of the
continuity of the temperature carrier at the
liquid-wall boundary [4].

Analysis of recent research and publications.
Non-isothermal conditions of technological
processes in chemical-technological equipment
are much more common than isothermal ones.
Today, there are many methods of supply and
removal of heat flows to or from the heat transfer
surface of machines and apparatus: including the
“pipe in pipe” principle or those with an
intermediate shell. The magnitude of the heat
flow through a solid surface is determined by its
thermal resistance and the heat transfer
coefficients from the sides of the heat exchanging
media [5]. If the medium is Newtonian, then the
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heat transfer coefficients are determined using
known formulas [6]. As mentioned above, much
less is studied in the non-Newtonian medium [1].
In this work the authors study the calculation of
the coefficients of heat transfer during the flow of
non-Newtonian fluid in a pipe or channel of
chemical and technological equipment. From the
analysis of the technical literature, we can
conclude that among the variety of non-
Newtonian fluids, the most common are three
classes: Bingam fluids, generalized displaced
fluids and power fluids. Under the term
"generalized-displaced fluids" we mean liquids
whose viscosity depends on the shear rate in an
arbitrary manner. A special case of such fluids is
power fluid [7]. Flow sections such as pipes and
ducts are chosen because the pipe is the main
element of the heat exchangers and the duct is
the main element of the working chamber of the
worm extruder [8]. The content of this work is
based on a number of results on the flow of the
fluids mentioned above in pipes and ducts [9, 10,
11, 12, 13, 14]. In particular, [14, 15] considered
the flow in channels of flat and rectangular
shapes whose boundaries move along
themselves, as well as in longitudinal and
transverse directions. In [14, 15, 16], three-
dimensional fields of non-Newtonian fluid flow
were constructed at different boundary
conditions, which form the necessary conditions
for calculating the heat transfer coefficients. As it
is known, the flow of fluid in a pipe or duct can be
organized so that in the process of supply or
removal of heat the thermal boundary layer is
formed (or not formed) [17]. The flow of the fluid
itself also may (or may not) form a hydrodynamic
boundary layer. The flow in which the
hydrodynamic layer is absent or, in the same
way, occupies the entire cross-section of a pipe or
channel is called stabilized [18]. Otherwise, it is
unstable [18]. The same is true of the
temperature transfer process [19]. The measure
of the ratio of the thickness of the hydrodynamic
and thermal boundary layers is the Prandtl
number [18, 19]. For most of the flows, the
thickness of the hydrodynamic boundary layer is
greater than the thermal one, and the Prandtl
number is greater than one. This is especially
true if the hydrodynamic boundary layer
occupies the entire cross section of a pipe or
channel [18, 19].

Results of the research and their
discussion

This paper deals with stabilized flows of non-
Newtonian fluids in a hydrodynamic sense and
with destabilized temperature transfer with
respect to the thermal boundary layer. The latter
condition means that the Péclet number is much
greater than one [20]. The convective
temperature transfer equation is used to
calculate the heat transfer coefficients [1,2,3]. The
heat transfer is affected by the velocity
component, which can be both tangent and
normal relative to the heat transfer surface [1]; in
straight channels and pipes with a stable flow, the
normal velocity component is absent. A
tangential velocity component can have two
components - along and across the longitudinal
axis of a pipe or channel. In this case, the tangent
velocity component is the vector sum of these
components, and it is this sum that determines
the heat transfer coefficient.

The equation of convective temperature
transfer is written as follows:

aT or &'t . A
Uy —+Uy — =71 y=—
A Y5 ~ 2 ¢
ax a oy PCp

(1)
where Yx and YY - tangent and normal
components of non-Newtonian fluid velocity
vector, m/s; T — absolute temperature of the
liquid, K; x _ temperature conductivity of the

liquid, m?/s; A - thermal conductivity of the
liquid, W/m-K; p - fluid density, kg/ m3; ¢, - heat
capacity of the liquid, J/kg-K. Equation (1) is
written in the approximation of the thermal
boundary layer so that only the transverse
derivative of the variable y is preserved in its
right side. The x coordinate is considered to be
aligned along the tangent component of the
velocity of the fluid (in the case of purely
longitudinal flow, the tangent component is
directed along the axis of the pipe or channel).
The above is shown in Fig. 1.

Consider Yy = 0, given the fact that there is a
thermal boundary layer and the heat flux near the
solid surface depends on the behavior of the
velocity field only near that surface. The second
and first order decompositions for Bingam and
non-Bingam fluids, respectively, should be used
according to the small distance to the solid
surface. If this distance is denoted as, the ¥

following expression should be used for Bingam
and non-Bingam fluids near the boundaries of
sections of the flow (channel pipe walls):

fuy .

— X5
Uy =wp +——7

(2)
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while for Bingam fluid near a solid core, the
following expression should be used:

-2
Uy :uh.+0::x 3"'2,
“ 3)
where WI' - velocity of the flow near wall, m/s;
Ay
+E w @
EZZZZ7 7]
- _—Borddrlayers
+
Core r+(7/ )
e pp—— e — o O/ 20
_—~—Bord¢r layers
7777777 7772772771
-h w®

Y - velocity of the solid core, m/s. In (3)

addition, proportional to ¥ is absent because the
second invariant of the deformation rate tensor
turns to zero [7].

«— W
|/ AAAAANA

"~ Borderlayers
./ y

The core boundar

The core boundar

"~ Borderlayers

WLLLLLLLLLLL L L L)
w—>

b

Fig. 1. Thermal boundary layers in Bingam fluid: a - cross-sectional view; b - view along a flat channel

Equations (1) from Yx to (2) and (3) allows
self-driving solutions with the help of
substitutions of this following kind [17]:

13 .
0| 2%% | ¥
7 a}” xl/.'i

(for Yx according to formula (2));

P
20w, ¥
O=l——= | A
X o X

(for Yx according to formula (3))
as see from (4), the heat flow density decreases
along the direction of the tangent velocity x Y3

and X Y* for first and second cases respectively.
By entering the average value of the heat flow

h w®
i { ? +
Corel
r(y
h wi
a

density at some length L and considering the
standard definition of the Nusselt number for the
latter, we obtain the following expressions:

2 s - 1,1"3
Nu=2" iti&] ,

-

z o
. = Jlll

N =£ h lOUl (5)
154\ y a3 ) 7

in which h - half-width of the channel, pipe, m.
Thus, it follows from (5) that the Nusselt
numbers are determined by the derivatives of the
velocity tangent to the wall on the walls of
channels, pipes and at the boundaries of the solid
core for the Bingam fluid. Below are the flows of
bingam fluid in the flat and rectangular channels
(see Figs. 2 and 3).

«— \W*
EZZ7Z77777777 7777
/4

Vk. (

Xy

Fig. 2. Longitudinal flow of bingam fluid in a flat channel: a - cross-sectional view; b - view along the channel
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The velocity of the longitudinal flow in a flat

channel is as follows [7] -
h ﬁ(l,ﬁ) < dP upper and lower boundaries of the channel,

iii(lig}‘) respectively, m/s (see Figure 2); 7/i -

+
in the Bingam fluid, Pa; W - velocities of the

&y zy/h; (6) dimensionless coordinates of the solid core; 7o -
(“_, - ]f 5 the boundary of the flow, Pa.

yE o AT , The velocity of the longitudinal flow of bingam

dpjdg, 1 dP T fluid in a rectangular channel is written as

pdc, K follows [14; 15]:

where Y - velocity of the flow, m/s; # - the
viscosity of the Bingam fluid, Pa s; P - pressure

. hoap 1-¢ har 7 o(17g)
ql}' T d/b ’ 2 = — .t i_d/b ' - — . +1.V||J'; (7)
2pdg, 1+&p (15y;) pds, 1+&p; (1577)
. a dP 1-¢&; a dP 7:-(1F €, .
U =TS, dr oy g U R
pds, 1+ p;(1Fy7) /@ 2pdS, 1+ p7(177)/
& =hja, &=/, ¢ =x/a, &=z2/h, ¢, =12/a,

where a - the width of the rectangular channel, m; authors [14; 15]. Their precice view is the linear

combination of expressions (6) for ¥" with
weight factors, dependent on the channel shape
parameter & [14; 15].

h - the height of this channel, m; 7’; and 7;5 -
dimensionless boundaries of the solid core. The

values for 7; and 7; are determined by the

A l/\/\/\/\
+
1 h W, ©
® [5a A Je--- )
W’ r +( +) + + + x=
X y Oy r, (YX ) \UA
j r, (v,) 0 R
- 0 »
-4 r--4----
Lo o) !
. ® a b
v h ij N N P
X=00
P(-a,h) «— Px*(y) —» P(a,h)
W, 'l .
* = W/,

+«—Py(x) —»

(-a-h) «—— Px(y¥) — 5 P(-a-h)

T

Fig. 3. Longitudinal and transverse flow of bingam fluid in a rectangular channel: a - longitudinal flow of bingam fluid
in a rectangular channel; b - longitudinal flow of bingam fluid in a rectangular channel, as a composition of flat
liquids; c - transverse flow of bingam fluid in a rectangular channel

WL'y
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The velocity of the longitudinal and transverse
flows of bingam fluid in a rectangular channel
with velocity boundaries (see Fig. 3) for the
longitudinal velocity component coincides with

the expressions (7), and the transverse velocity

components Y1y and Ul are represented by the
following expressions [7]:

L _ndp - 2(1E5)(n ) v (6 7))
Y oude,  1ve (177 13y (8)
. _adp &1 i(lizf?)(ﬂff—ff_r)gvir (2.-7)
= 2ude, I+s (1% 7))/ 1%y
gh:X/h gy:y/h
Hy:y/a §X=X/a;

dPY/dgh , dPx/dea - transverse pressure

gradients in the cross-sectional plane of the
channel, Pa/m. (see Fig. 3).

where

YIn formulas (7) and (8) there are valuies P;I )

Pxi, r*, s*, which depend on the combinations
of boundary conditions in fractional and rational
ways, which are not presented here due to the
complexity of the calculations [7]. Based on
formulas (4) and (5), the corresponding
derivatives should be calculated. For the flat
channel and the longitudinal flow there are two
coefficients of heat transfer - on the upper and
lower walls; and two heat transfer coefficients, at
the upper and lower bounds of the solid core.
This means that the first derivatives of (6) in

points (:«Zy =*1 and the second derivatives of the

+
same expression in points é:y =7 must be

calculated. By omitting simple intermediate
actions, you can write the following result:

Therefore, Nusselt numbers are proportional
to the cubic root of the first expression and the
fourth degree root of the second expression (9).

Taking into account expression (6) for 7/i, it
turns out that Nusselt numbers in a rather
complicated way depend on all the parameters of
the flow: pressure gradient, flow threshold,
velocity differences of the flow near walls.

In the longitudinal flow of Bingam fluid in a
rectangular channel there are eight boundaries -
four walls and four boundaries of the solid core.
Therefore, there are eight heat transfer
coefficients. To calculate them, it is necessary to
determine four first derivtives of expressions (7)
by Y and X respectively in points éty = il;
¢« =*1 and four second derivatives by Y and X

. . . =t +
respectively in points ‘fy =7y, S=7x. By
omitting the intermediate transformations, the
final result can be written as follows:

av* 1dP, _ . o'v°
i (17 /%), U - Lo
ay )Ud:'k ar” ﬂhdé’n
ov’, _1dP (1777) ovj, 1 P 1
oy | mdl, 1exipi(1Fp7) O | phdS, 145700 (17 77)
v’ 1 dP (1¥77)
i W) (10)
&% pds, 1+x°p7-(1% 77 )/ x
820@ 1 dp 1
o |, wads, 1+p:-(1Fy7)/x°

Finally, in the longitudinal-transverse flow in
the rectangular channel there are eight
coefficients of mass transfer. The calculation is
exactly the same as the calculation for the
longitudinal flow. Formulas (7) and (8) should be
used. The only difference from the longitudinal-

+ +
transverse flow is that instead of Y}y and Yix we

from An
example below is a calculation for speed with
index «¥ ».
relevant:

The following expressions are
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If expressions (11) are taken in points é:y =+l

and gy :7;, then (11) are simplified, so we
receive the following results:

ijn which Yk - velicoty of the colid core, m/s. This
value is defined in the work of the authors [7]
and due to the complexity of the calculations it is
not given here.

y

+ +
@ Wy Wy

v A

«— 2a > @

+

W W||xx

0

.

© S Vix
W !

© wy Wiy

Fig. 4. Rectangular channel and boundary

conditions of three-dimensional flow in the channel:
W, - value of longitudinal velocity on the walls of the
channel, normal to the OY axis; W, - the value of the
longitudinal velocity on the walls of the channel, normal
to the OX axis; W, ,W, - values of the transverse
velocities at the channel boundaries.

N o
Derivatives from components Uy by X are
calculated in the same way. The result coincides
with (12), taking into account the replacement of

. _a(h+y) [ a* Vv -y dPT? 2
vl = T P A Sl
B Ap~  p dz
. W —w"
yr=

_E_Z(Of_ﬂﬁfr ;
5\ s

(11)

v,

Yyt —=2

o, ’ ou,, ’ , OUL,
X2 — | +2| — | +2u],

+ +
index « Y » with index « X» and values Wy, W,

with values Wix i W, (see Fig. 3). The very first
and second derivatives included in (11) and (12)
are calculated from expressions (8).

According to the written above for the Bingam
fluid, the calculation of the heat transfer
coefficients for the flow of generalized and power
fluids should be considered. Below, we consider
the longitudinal flow in a flat channel as the base
flow, similar to the same flow of Bingam fluid.
Then the longitudinal and transverse flow in the
flat channel and the longitudinal flow in the
rectangular channel are considered (see Figs. 4-
7).The boundary conditions for the basic problem
of the Couett flow are shown in Fig. 5.

)

W
12
Fig. 5. Slit channel fragment and boundary

conditions: =Xy ; =X , width of channel - 2aq; 1=y ,
width of channel 2h

The expression for a longitudinal flow profile
in a flat channel is as follows [7]:

3dPldz

p aﬁ,+h+y ari2_k +wT,
45

luef:a-’_ﬁ\/z’



95

Journal of Chemistry and Technologies, 2020, 28(1), 88-99

in which g, - the viscosity of the generalized

fluid Pas; a, 8 - viscosity parameters; W and W
- movement velocity of the flow near channel
walls, m/s. (see Figure 4); Z - coordinate along
the axis of the channel, m. The expressions for the
velocity of a longitudinal transverse flow in a flat
channel in the longitudinal direction have the

vy

=

e

form similar to (13), but due to the fact that there
are two velocity components in this flow, the

value § varies by this rule: # % =7 (1+k)]2’,

where value K depends on the velocities at the
boundaries of the channel in the following way
[14].

e

<

O, (B

-

Ix

a

v

0] (x)

b

Fig. 6. Transverse flow in the slit channel: a - depending on the coordinate y, b - depending on the coordinate x

_wi-wl

k (14)

w”_ —w”_
ot .
where Wi, W, - velocities of the of the flow near

channel walls in the longitudinal and transverse
directions, respectively. The value of o in the
longitudinal transverse flow coincides with the
same value of the longitudinal flow. Transverce

velocity component U; is also described by the
formula (13), Bin which the longitudinal pressure
gradient dP/dz  must be replaced with a

transverse gradient dP/dY; and value f should
be replaced with value Sy according to the rule:

Pop=F (1+k’)/2k’ " The value of a remains
equal to its value in the longitudinal flow. The

® W;‘; 1

v; () ///’
®| \ - »
4\ o\ U (x)
W\h \‘ 0 /\

\\ /// \\ *

\ /// \\\ ®
¥ ONIA
5T A

X: Q@ W

longitudinal transverse flow is characterized by

two special points Y; and Yy, expressions for
which are derived from expression (13) for

coordinate Y according to the rules:
v (w+ -w,a, f, dP/dz) -y (w+ -w.a. B, dP/dz);

y:_ (uﬁr -w,a, f, dP/dz) N ],:‘ (“"i -wl.a, B, dP/dx);

Value dP/dx is calculated from the following

formula [7]:
L 3% W@ +zﬁ’£(u-*—u-"]J A,
de 2 h a+f, 2 - T la+p

(15)

IV:\' )
N
+ 4
W N v (») /
X \\
_ / ”
12 U\()) )‘\ 0 // IV,\
7 =] X
~ £
/ e v, (x) '
/ _ \\ ,11
7 Y (") \\\
X WI‘., X
b

Fig. 7. Rectangular channel breakdown and breakdown Linearization:
a - for longitudinal flow; b - for transverse flow
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A longitudinal flow in a rectangular channel is
also constructed from velocity profiles (13) as the
main parameters. This is done by splitting the

subdomains in which the longitudinal velocity
depends on the x and y coordinates separately
[14]. The compact expression of the expression

rectangular cross-section of the channel ir;/go for longitudinal Velogity is as follows:
Lo, a  xx dP) 2 f, a aFx dP| 2 B
m“’){w 7;} zdf/dz{w ﬁﬂ SoE
. wl—w),
X, :&_2( o +L£]Uv; I=y.x, l;=ha, x=hfa, (16)
B 4B B d=

a, =a(1+a‘:2)

a, :a(1+l/£2)

where @ - the width of the rectangular channel,
m.

When calculating the heat transfer coefficients
of the flows whose velocities are represented by
formulas (13), (14), (15), and (16), it is necessary
to use formulas (5), while taking into account that
in a plane channel in the longitudinal and
longitudinal transverse flows there two
coefficients of heat transfer, and in a rectangular
channel — there are four coefficients of heat
transfer. In a longitudinal transverse flow in a flat
channel, it is necessary to add two components of

L

B, =p(1+&’ )312 /2,
B =p(1+y/=)" /2,

the first velocity derivatives near the channel
boundaries. For a longitudinal flow in a flat
channel, the values of the derivatives in points

Y =%h are equal to:
@  hiy ap\’
4,{32 - B dz
For the longitudinal transverse flow, the rule
of finding the vector module (see formula (17) of

=F

(17)

OV |posn

+
the expression for Yy ) must be used in the
calculation of the derivatives. As a result of

tangent velocity according to Pythagorean theory. ~ calculations  for — derivatives, the following
As for the Bingam fluid flow, the calculation of the =~ €XPT€SSIONS are correct:
heat transfer coefficients is reduced to calculating
oo™ 1 = . ous
v = - - {ZWH_ O +2w] o }
o y==h 2 (w”:) +(wi)h g o y==h
g 2 — 12
00| g & hrydP) B =B J1+1)/2;
Y ey 26 \46. B &
112
Ut B h+ N 2 2
s :_ii[“j J’xd_P} ; B. =B (1+K )/ 2k .
| ., 28 \AB B dz
. w—w
Y. = 72
a [ a N h dP] ; (18)
A, Ap; B, &
o= Wi -W,
g @ hap)"-
— -2 — 4+
B. 4B P, dx

The calculation of derivatives for longitudinal
flow in a rectangular channel is performed
according to the formulas (16) and is reduced to
formulas of type (17) with corresponding values

a4, B, X,
It makes sense to separately consider the

calculation of heat transfer coefficients for the
flow of a power fluid. Due to the fact that a

number of coolants is characterized by the
viscosity of a power fluid [15]. Due to the fact that
the main points of the calculations are exactly
similar to those described for Bingam and
generalized liquids, only the longitudinal flow of a
power fluid in a flat channel is considered below.
The expression for the velocity of the longitudinal
flow of a power fluid with exponent is as follows:
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U:_}’—}’*_djgln+1 i _‘h@y"@g_n-ﬂ Ys; e
B d| n+2dPl& | B dr| n+2dPldz
. w—w
Yy = 0 dvt[
P = . 19
2{& dPJl “=P N\ (19)

B dz

The calculation of the derivative of (19) for the
heat transfer coefficient results in the following
result:

1

e

The presented resultss indicate that the
dependency of the Nusselt number on the
pressure gradients (longitudinal and transverse)
of the rheological and geometric characteristics
of liquids and channels is nonlinear and very
complex. In order to make this dependency

-

cv

hFy" dP
£ d

= (20)
Ay

simpler and clearer, you should write down the
expressions for the Nusselt number for the
simplest flow, that is, for the longitudinal flow in
a flat channel. The more complex flows also have
Nusselt numbers, but the numbers are more
quantitative than the complicated ones.

The expressions for the Nusselt numbers
below are written according to formulas (5) up to
the trivial factors at velocity derivatives. For
Bingam fluid, the Nusselt number is proportional
to the following expression:

13

(w_ -w')f’Zk

dP T
Nu~-y——|1m £ -
udé dP/dS  dP[d¢ x
Nu — [lﬁ
pds

From this expression it follows that the first

174
] , (at the boundaries of the solid nucleus)

(Vp)x(1-7,/dPldS) || (on the walls)

(21)

velocity of the displacement of the Couett flow of

two Nusselt numbers depend on three the Newtonian fluid.
parameters: (l/ﬂ)(dP/dé'); . /(a’P/dz), For a generalized fluid, the correct expression
o for Nusselt numbers is the following:
(“' —-w )f( 2h the last of which is the kinematic
1213
2 w—wT)/2h
Nu~{+-2 5| L iid—i- 1+ ( ) " : (22)
2o A @ (o 1aP)
2 \4p* pdc
From which it can be seen that the Nusselt The power fluid has a Nusselt number
number also depends on the following three proportional to the following expression:
parameters: @/25 ; (/B)(dP/dS); (“"+ —“"_)Qh.
w —w )/h
|12 () @)
pdg
which includes two parameters:
(1/B)(dP/dS) and (w" —w™)/2h,
Conclusion Newtonian fluids at the walls of the channels are

Based on the above, we can draw the following
conclusions. All presented results refer to
hydrodynamically stabilized flows. Nusselt
numbers for Bingam fluid and other non-

determined by the first derivative of the velocity
aligned along the normal to the wall. Nusselt
numbers for the Bingam fluid within the solid
core are determined by the second derivative of
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the velocity for to the normals to the boundary. If
the tangent velocity of the fluid flow at the walls
has two components, then the velocity, the
derivative of which is included in the Nusselt
number, is determined through these
components according to Pythagoras' theorem.
Nusselt numbers for Bingam and generalized
fluids depend on three parameters for
longitudinal flow in a flat channel. If a flow is
more complex, that is, two or three-dimensional,
then the number of parameters increases so that
these parameters are generated by each velocity
component of the multidimensional flow and
form all possible combinations.

Subsequently, the value of Nusselt numbers
allows us to calculate the corresponding
coefficients of heat transfer and heat return
between non-Newtonian fluids, pipes and
channels, and the environment.
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