

UDK 541.123.3

Journal of Chemistry and Technologies

pISSN 2663-2934 (Print), ISSN 2663-2942 (Online)

journal homepage: http://chemistry.dnu.dp.ua

PHASE RELATIONS IN THE SYSTEM TERNARY BASED ON CERIA, ZIRCONIA AND YTTERBIA AT 1500 °C

Oksana A. Kornienko, Olena R. Andrievskaya, Hanna K. Barshchevskaya

Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, 3 Krzhyzhanovskoho str., 03680 Kyiv, Ukraine Received 26 August 2020; accepted 10 September 2020, available online 4 November 2020

Abstract

Based on the results of studying the synthesized samples by X-ray phase analysis, the isothermal section of the ZrO₂-CeO₂-Yb₂O₃ system at 1500 °C has been constructed. In this temperature new ordering of intermediate phases was not confirmed. It was established that in the system there exist fields of solid solutions based on tetragonal (T) modification ZrO₂, cubic (C) modification Yb₂O₃ and cubic with fluorite-type structure (F) modifications CeO₂ (ZrO₂), as well as intermediate phase with orhombohedral structure $Zr_3Yb_4O_{12}$ (δ) were determined. The maximal solubility of ceria in δ - phase is 12 mol. % be along the section CeO₂-(60 mol % ZrO₂-40 mol % Yb₂O₃). The refined lattice parameters of the unit cells for solid solutions of compositions for the systems were determined. In the zirconia-rich corner, the solid solutions based on tetragonal modification of ZrO2 are formed. The solubility of Yb2O3 in the T-ZrO2 is low and amounts to ~0.5 mol %, as evidenced by XRD analysis results. The solid solutions based on tetragonal modification of zirconia cannot be quenched from high temperatures due to low stability of T-ZrO₂ under cooling with furnace conditions. The diffraction patterns recorded at room temperatures included the peaks of monoclinic phase M-ZrO₂. The lattice parameters of the intermediate phase with orhombohedral structure $Zr_3Yb_4O_{12}$ (δ) vary from a = 0.9654 nm, c = 0.8935 nm for the composition, containing 59.4 mol % ZrO₂-1 mol. % CeO₂-39.6 mol % Yb₂O₃ to a = 0.9742 nm, c = 0.9012 mn for the composition (F + δ), containing 51 mol % ZrO₂-15 mol % CeO₂-34 mol % Yb₂O₃ and to a = 0.9759 nm, c = 0.9028 nm for the composition (F + C + δ), containing 48 mol % ZrO₂-20 mol % CeO₂-32 mol % Yb₂O₃. The isothermal section of the ZrO₂-CeO₂-Yb₂O₃ system at 1500 °C contains one three-phase region (F+C+ δ), four single-phase regions (F-CeO₂(ZrO₂), T-ZrO₂, δ , C-Yb₂O₃) and four two-phase regions (C+F, C+ δ , F+ δ , F+T). *Keywords:* phase equilibrium; phase diagram; solid solution; lattice parameter.

ФАЗОВІ РІВНОВАГИ В ПОТРІЙНІЙ СИСТЕМІ НА ОСНОВІ ОКСИДІВ ЦИРКОНІЮ, ЦЕРІЮ ТА ІТЕРБІЮ ЗА 1500 °C

Оксана А. Корнієнко, Олена Р. Андрієвська, Ганна К. Барщевська

Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, вул. Кржижановського 3, Київ, 03680, Україна

Анотація

За результатами рентгенофазового аналізу досліджених зразків побудовано ізотермічний переріз потрійної діаграми стану системи ZrO₂-CeO₂-Yb₂O₃ за температури 1500 °C. Нових фаз при зазначеній температурі не виявлено. Встановлено, що в дослідженій системі утворюються поля твердих розчинів на основі кубічної (F) модифікації із структурою типу флюориту ZrO₂ (CeO₂), тетрагональної (T) модифікації ZrO₂, кубічної (C) модифікації Yb₂O₃, а також упорядкованої фази Zr₃Yb₄O₁₂ (δ), що кристалізується в ромбоедричній структурі. Гранична розчинність оксиду церію в δ-фазі складає 12 мол.% за перерізом CeO₂-(60 мол.% ZrO₂-40 мол.% Yb₂O₃). Параметри елементарної комірки упорядкованої δ -фази змінюються від *a* = 0.9654 нм, *c* = 0.8935 нм для однофазного зразка, що містить 59.4 мол.% ZrO₂-1 мол.% CeO₂-39.6 мол.% Yb₂O₃ до *a* = 0.9742 нм, *c* = 0.9012 нм для двофазного зразка (F + δ), що містить 51 мол.% ZrO₂-15 мол.% CeO₂ -34 мол.% CeO₂-32 мол.% Yb₂O₃ та до *a* = 0.9759 нм, *c* = 0.9028 нм для трифазного зразка (F + c + δ), що містить 48 мол.% ZrO₂-20 мол.% CeO₂-32 мол.% Yb₂O₃ та до *a* = 0.9759 нм, *c* = 0.9028 нм для трифазного зразка (F-CeO₂(ZrO₂), T-ZrO₂, δ , C-Yb₂O₃) і чотирьох двофазних (C + F, c + δ , F + δ , F + δ , F + T) областей.

Ключові слова: фазові рівноваги; діаграма стану; тверді розчини; періоди кристалічних ґраток.

*Corresponding author: e-mail address: Kornienkooksana@ukr.net © 2020 Oles Honchar Dnipro National University doi: 10.15421/082015

ФАЗОВЫЕ РАВВНОВЕСИЯ В ТРОЙНОЙ СИСТЕМЕ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, ЦЕРИЯ И ИТТЕРБИЯ ПРИ 1500 °C

Оксана А. Корниенко, Елена Р. Андриевская, Анна К. Барщевская

Институт проблем материаловедения им И. Н. Францевича НАН Украины, ул. Кржижановского 3, Киев, 03680,

Украина

Аннотация

По результатам рентгенофазового анализа исследованных образцов, построено изотермическое сечение тройной диаграммы состояния системы $ZrO_2-CeO_2-Yb_2O_3$ при температуре 1500 °C. Новых фаз при указанной температуре не выявлено. Установлено, что в системе образуются поля твердых растворов на основе кубической (F) модификации со структурой типа флюорита ZrO_2 (CeO₂), тетрагональной (T) модификации ZrO_2 , кубической (C) модификации Yb₂O₃, а также упорядоченной фазы $Zr_3Yb_4O_{12}$ (δ), которая кристаллизуется в ромбоэдрической структуре. Предельная растворимость оксида церия в δ-фазе составляет 12 мол.% вдоль сечения CeO₂-(60 мол.% ZrO_2-40 мол.% Yb₂O₃). Параметры элементарной ячейки упорядоченной δ -фазы изменяются от *a* = 0.9654 нм, *c* = 0.8935 нм для однофазного образца содержащего 59.4 мол.% ZrO_2-1 мол.% CeO₂-39.6 мол.% Yb₂O₃ до *a* = 0.9742 нм, *c* = 0.9012 нм для двухфазного образца (F + δ), содержащего 51 мол.% ZrO_2-15 мол.% ZrO_2-20 мол.% Yb₂O₃ и до *a* = 0.9759 нм, *c* = 0.9028 нм для трехфазного образца (F + C + δ), содержащего 48 мол.% ZrO_2-20 мол.% CeO₂-32 мол.% Yb₂O₃. Изотермическое сечение диаграммы состояния системы $ZrO_2-CeO_2-Yb_2O_3$ при 1500 °C характеризуется наличием одной трехфазной (C + F + δ), четырех однофазных (F-CeO₂(ZrO₂), T-ZrO₂, δ , C-Yb₂O₃) и четырех двухфазных (C + F, C + δ , F + δ , F + T) областей.

Ключевые слова: фазовые равновесия; диаграмма состояния; твердые растворы; периоды кристаллических решеток

Вступ

Темпи розвитку сучасних технологій потребують створення матеріалів 3 підвищеними характеристиками. Матеріали оксиду, на основі цирконій (IV) стабілізованого оксидами Ln₂O₃, можуть бути використані для створення функціональної та конструкційної кераміки. [1-4]. Діаграма стану системи ZrO₂-CeO₂-Yb₂O₃ є фізико-хімічною основою для створення матеріалів конструкційного функціонального та призначення. Дані термодинамічну про стабільність твердих розчинів на основі оксидів цирконію, церію та іттербію у літературі відсутні, обумовлює що необхідність дослідження фазових рівноваг у потрійній системі ZrO₂-CeO₂-Yb₂O₃. Фазові співвідношення в обмежуючих подвійних системах ZrO₂-Yb₂O₃ і CeO₂-Yb₂O₃ досліджено в [5-25].

Ha основі проведеного літературного огляду встановлено, що діаграму стану системи ZrO_2 –CeO₂ досліджено в роботах [5–8]. В області температур ≤ 1500 °С вказаної системи утворюються поля гомогенності на основі моноклінної M-ZrO₂ (0 до 1 мол.% CeO₂) при 1100 °С, тетрагональної Т-ZrO₂ (0 до 18 мол.% CeO₂) та (2 до 18 мол.% CeO₂) при 1500 та 1100 °С відповідно. Утворення кубічних твердих розчинів зі структурою типу флюориту F-CeO₂ спостерігається в концентраційному інтервалі 56 до 100 мол.% CeO₂ при 1500 °C і від 73 до 100 мол.% CeO₂ при 1100 °С. Зазначені тверді розчини розділені між собою двофазними полями (F+T) та (M+T), відповідно [8].

Фазові рівноваги в системі СеО2-Уb2О3 досліджено в [9–12]. Елементи діаграми стану подвійної системи наведено в [11; 12]. Встановлено, що для подвійної системи СеО2- Yb_2O_3 характерно утворення граничних твердих розчинів з кубічною структурою двох типів: F-CeO₂ та C-Yb₂O₃, між вказаними твердими розчинами спостерігається утворення двофазної області (С + F) [11; 12]. Гранична розчинність Yb₂O₃ в F-модифікації мол.% °C. СеО₂ складає 25 при 1500 Гетерогенна область розташована в концентраційному інтервалі 10-75 мол.% СеО2 при 1500 °С [12].

Фазові рівноваги у подвійній системі ZrO₂-Yb₂O₃ досліджено в [13–25]. Ліквідус системи характеризується наявністю максимуму при 2820 °С та 25 мол.% Yb₂O₃, а також мінімуму при 2400 °С та 85 мол.% Yb₂O₃. На ліквідусі знайдено перитектичну точку з координатами 2460 °С та 79 мол.% Yb₂O₃, в якій склад рідкої фази бере участь у перитектичному перетворені L + F \rightleftharpoons C. Для даної системи характерно утворення областей гомогенності твердих розчинів на основі M-ZrO₂, T- ZrO₂, F-ZrO₂, а також C-Yb₂O₃ і упорядкованої δ-фази $(Zr_{3}Yb_{4}O_{12}),$ шо кристалізується в ромбоедричній структурі. При температурі вище 1630 °С δ-фаза переходить у дефектну структуру типу флюориту F-ZrO₂ [25].

У даній роботі вперше побудовано ізотермічний переріз діаграми стану системи ZrO₂-CeO₂-Yb₂O₃ при 1500 °C у всьому інтервалі концентрацій.

Результати та їх обговорення

Як вихідні речовини використовували нітрати цирконію ZrO(NO₃)₂·2H₂O та церію також $Ce(NO_3)_3 \cdot 6H_2O_7$ а оксид Yb₂O₃. Попередньо вихідні оксиди просушували в муфелі при 200 °С (2 год). Для приготування шихт використовували концентраційний крок 1 - 5 мол%. Синтезовані порошки пресували в таблетки Ø = 5 мм, h = 4-5 мм під тиском 10-30 МПа. Отримані зразки піддавали двоступеневій термообробці: прожарювання в печі з нагрівачами Н23U5Т (фехраль) при 1100 °С протягом 1679 год, що дозволяє позбутися залишків нітратів, та відпал у печі з нагрівачами з дісиліциду молібдену (MoSi₂) при 1500 °С протягом 150 год у повітрі, в результаті якого відбувається дифузійноконтрольоване вирівнювання складу відповідно з діаграмою стану системи. Зразки до нагрівали віл кімнатної потрібної температури із швидкістю 3.5 град/хв. Відпал зразків був безперервним. Охолодження проводили разом з піччю.

На установці ДРОН-З при кімнатній температурі (СиКа-випромінювання, Niфільтр) проведено рентгенофазовий аналіз (РФА) зразків. Крок сканування складав 0.05-0.1 град, експозиція 4 у діапазоні кутів 20 від 10 до 100°. Для ідентифікації результатів РФА використовували базу даних Міжнародного комітету порошкових стандартів (JSPSDS International Center for Diffraction Data 1999). Склади для дослідження фазових рівноваг в потрійній системі $ZrO_2-CeO_2-Yb_2O_3$ при температурі 1500 °С розташовані вздовж п'яти перерізів: $ZrO_2-(50 \text{ мол.}\% \text{ CeO}_2-50 \text{ мол.}\%$ $Yb_2O_3), ZrO_2-(15 \text{ мол.}\% \text{ CeO}_2-85 \text{ мол.}\% \text{ Yb}_2O_3),$ $ZrO_2-(85 \text{ мол.}\% \text{ CeO}_2-15 \text{ мол.}\% \text{ Yb}_2O_3), CeO_2-$ (60 мол. $\% ZrO_2-40 \text{ мол.}\% \text{ Yb}_2O_3), Yb_2O_3-(60 \text{ мол.}\% ZrO_2-40 \text{ мол.}\% \text{ CeO}_2)$ та ізоконцентрати 20 мол. $\% ZrO_2$. Експериментальні точки показано на рис. 1.

У потрійній системі $ZrO_2-CeO_2-Yb_2O_3$ при 1500 °С не встановлено утворення нових фаз. При дослідженій температурі в системі $ZrO_2-CeO_2-Yb_2O_3$ утворюються поля твердих розчинів на основі тетрагональної (T) модифікації ZrO_2 , кубічної (C) модифікації Yb_2O_3 , кубічної модифікації з структурою типу флюориту (F) CeO_2 (ZrO_2) та упорядкованої фази $Zr_3Yb_4O_{12}$ (δ), що кристалізується в ромбоедричній структурі.

За отриманими результатами побудовано ізотермічний переріз діаграми стану системи ZrO₂-CeO₂-Yb₂O₃ при 1500 °C (рис. 1). У табл. наведено хімічний та фазовий склад зразків, а також параметри елементарних комірок твердих розчинів, що утворюються в даній системі.

За допомогою концентраційних залежностей параметрів елементарних комірок (рис. 2–8). та даних про фазовий склад зразків визначали межі областей гомогенності.

Рис. 1. Ізотермічний переріз діаграми стану системи ZrO₂−CeO₂−Yb₂O₃ при температурі 1500 °C (° – однофазні, • – двофазні, • – трифазні зразки)

Fig. 1 Isothermal section at 1500 °C for the system ZrO₂-CeO₂-Yb₂O₃ (o - single-phase samples, • - two-phase samples, • - three-phase samples)

Тверді розчини на основі T-ZrO₂ поле твердих розчинів на основі T-ZrO₂ утворюються в куті діаграми з великою розташоване вздовж граничної подвійної концентрацію цирконій (IV) оксиду. Вузьке системи ZrO₂-CeO₂ (0-18 мол.% CeO₂).

Розчинність Yb_2O_3 В $T-ZrO_2$ становить ~ 1 мол.%, що підтверджено даними РФА. При використаних режимах охолодження тверді розчини на основі тетрагональної модифікації ZrO₂ не загартовуються. На дифрактограмах, отриманих при кімнатній температурі, присутні лінії, характерні для моноклінної (М) модифікації цирконій (IV) оксиду. Часткову стабілізацію Т-фази спостерігали за перерізом ZrO₂-(85 мол.% CeO₂-15 мол.% Yb₂O₃) для ряду складів, що містять 95,90 та 80мол.% ZrO₂ відповідно. Повністю стабілізовану тетрагональну модифікацію T-ZrO2 знайдено у двофазних зразках за перерізом Yb₂O₃-(60 мол.% ZrO₂-40 мол.% CeO₂) у складах, що містять від 1 до 5 мол.% Yb₂O₃. Наявність двофазної області (F + T) було визначено наступними складами: за перерізом ZrO₂-(85 мол.% CeO₂-15 мол.% Yb₂O₃) у зразках, що містять 65, 70 мол.% ZrO₂-однофазні (F); 75, 95 мол.% ZrO₂- двофазні (F + T) та перерізом Yb₂O₃-(60 мол.% ZrO₂-40 мол.% CeO₂) у зразках, що містять 5 мол.% Yb₂O₃ – двофазний (F-CeO₂ + T-ZrO₂) i 10 мол.% Yb₂O₃ однофазний (F-CeO₂), (табл.).

3 НИЗЬКИМ В області вмістом ZrO_2 утворюються тверді розчини на основі кубічної (C) модифікації ітербій (III) оксиду, які мають значну протяжність. Поле твердих розчинів на основі С-Yb₂O₃ вигнуто в бік обмежуючої подвійної системи ZrO₂-CeO₂. Границя області гомогенності С-модифікації Yb₂O₃ проходить від обмежуючих відповідних координат y подвійних системах CeO₂-Yb₂O₃ (0-12 мол.% CeO₂) і ZrO₂-Yb₂O₃ (0-16 мол.% ZrO₂). Гранична розчинність С-фази за перерізом Yb₂O₃-(60 мол.% ZrO₂-40 мол.% CeO₂) становить 24 мол.% ZrO₂ (рис. 1). Параметри елементарної комірки при цьому змінюються від a = 1.0425 нм для чистого Yb₂O до a = 1.0447 нм для трифазного зразка (C + F + δ), що містить 27 мол.% ZrO₂-18 мол.% CeO₂-55 мол.% Yb₂O₃. Розчинність церій (IV) оксиду в C-Yb₂O₃ вздовж ізоконцентрати 20 мол.% ZrO₂ досягає 20 мол.% CeO₂. Параметри елементарної комірки твердих розчинів на основі С-Yb₂O₃ вздовж ізоконцентрати 20 мол.% ZrO_2 змінюються від *a* = 1.0418 нм для твердого розчину, що містить 20 мол.% ZrO₂-5 мол.% CeO₂-75 мол.% Yb₂O₃ до *a* = 1,0447 нм для двофазного зразка (C + F), що містить 20 мол.% ZrO₂-20 мол.% CeO₂-60 мол.% Yb₂O₃ (табл.).

Протяжність області гомогенності С-фази визначено за даними рентгенограм зразків наступних складів: за перерізом ZrO₂-(15 мол.% CeO₂-85 мол.% Yb₂O₃) в інтервалі концентрацій від 5 до 20 мол.% ZrO₂- однофазні (С), 25 мол.% ZrO_2 – двофазний–(С + δ); за перерізом Yb₂O₃–(60 мол.% ZrO₂– 40 мол.% CeO₂) від 60 до 65 мол.% Yb₂O₃– однофазні (С), 55 мол.% Yb₂O₃–трифазний (C+F+ δ); вздовж ізоконцентрати 20 мол.% ZrO₂– 5 мол.% CeO₂–однофазний (С), 20 мол.% CeO₂– двофазний (С + F).

Утворення твердих розчинів заміщення супроводжується зарядовою компенсацією, оскільки іон Yb³⁺ заміщується на іони Ce⁴⁺(Zr⁴⁺) і компенсація збиткового позитивного заряду відбувається шляхом розміщення іонів Оксигену в міжвузлях, або шляхом захоплення електронів. Розчинність Се⁴⁺ та Zr⁴⁺ у кристалічній ґратці кубічного твердого розчину С-типу пов'язана зі стеричним фактором як для подвійних граничних систем, так і для представленої потрійної системи. Ce^{4+} характеризується Оскільки більшим іонним радіусом (0.090 нм) у порівняні з Zr⁴⁺ (0.079 нм) та Yb³⁺ (0.086), то при утворенні твердого розчину на основі С-Yb₂O₃ процес заміщення іонів Yb³⁺ на Ce⁴⁺ з термодинамічної точки зору протікатиме дещо складніше в порівняні з Zr⁴⁺. Внаслідок цього гранична розчинність CeO₂ в кубічному твердому розчині С-типу становить 18 мол.%, в той час як максимальна розчинність ZrO₂ дещо більша та становить 24 мол.% у потрійній системі ZrO₂-CeO₂-Yb₂O₃ при 1500 °С.

У дослідженому ізотермічному перерізі найбільшу протяжність має область гомогенності твердого розчину на основі кубічної модифікації церій (цирконій) (IV) оксиду з структурою типу флюориту (F). Фази F-CeO₂ (ZrO₂) утворюють безперервний ряд твердих розчинів та існують у рівновазі з усіма фазами, що спостерігаються в системі. Границі області гомогенності F-фази простягаються від відповідних координат у обмежуючих подвійних системах CeO₂-Yb₂O₃ (74-100 мол.% CeO₂), ZrO₂-CeO₂ (0-44 мол.% ZrO₂) i ZrO₂-Yb₂O₃ (75-90 мол.% ZrO₂). Слід зазначити, що в концентраційному інтервалі від 20 до 40 мол.% ZrO₂ відбувається звуження області гомогенності кубічних твердих розчинів типу флюориту. Зазначене звуження, напевно, пов'язано з переходом від кубічних твердих розчинів на основі F- CeO₂ до F- ZrO₂.

Концентраційні залежності параметрів елементарних комірок твердих розчинів із структурою типу флюориту показано на рис. 2, 3, 5. Параметри елементарної комірки твердого розчину типу флюориту F-CeO₂ за перерізом CeO₂-(60 мол.% ZrO₂-40 мол.% Yb₂O₃) змінюються від a = 0.5393 нм для

однофазного зразка, що містить 3 мол.% ZrO₂-95 мол.% CeO₂-2 мол.% Yb₂O₃ до *a* = 0.5334 нм для двофазного зразка (C + F), що містить 18 мол.% ZrO₂-70 мол.% CeO₂-12 мол.% Yb₂O₃ та до *а* = 0.5326 нм для трифазного зразка (C + F+δ), що містить 21 мол.% ZrO₂-65 мол.% CeO₂-14 мол.% Yb₂O₃ (рис. 5). За перерізом $ZrO_{2}-(85)$ мол.% CeO₂-15 мол.% $Yb_{2}O_{3}$ параметри елементарної комірки F-CeO₂ змінюються від a = 0.5366 нм для твердого розчину, що містить 5 мол.% ZrO₂-80.75 мол.% CeO₂-14.25 мол.% Yb₂O₃ до *a* = 0.5356 нм для двофазного зразка (C + F), що містить 10 мол.% ZrO₂-76.5 мол.% CeO₂-13.5 мол.% Yb₂O₃, до a = 0.5323 нм для трифазного зразка (F + C + δ), що містить 20 мол.% ZrO₂-63.75 мол.% CeO₂-11.25 мол.% Yb₂O₃, а також до *a* = 0.5320 нм для двофазного зразка (F + δ), що містить 25 мол.% ZrO₂-63.75 мол.% CeO₂-11.25 мол.% Yb₂O₃ (табл., рис. 2).

Вздовж ізоконцентрати 20 мол. % ZrO₂ <F-CeO₂> параметри змінюються від а = 0.5351 нм для твердого розчину, що містить 80 мол.% CeO₂ до *a* = 0.5325 нм для трифазного зразка (F + C + \delta), що містить 70 мол.% CeO₂ та до *a* = 0,5316 нм для двофазного зразка (F + C), що містить 60 мол.% CeO₂ (табл.). Параметри елементарної комірки твердого розчину типу флюориту F-ZrO₂ за перерізом ZrO₂-(15 мол.% CeO₂-85 мол.% $Yb_{2}O_{3}$ змінюються від а = 0.5123 нм для граничного двофазного складу (Т + F), що містить 95 мол.% ZrO₂ до *a* = 0,5130 нм для твердого розчину (F –ZrO₂), що містить 90 мол.% ZrO₂ та до a = 0.5174 нм для двохфазного зразка (F + δ), що містить 65 мол.% ZrO₂. За перерізом ZrO₂-(50 мол.% CeO₂-50 мол.% Yb₂O₃) параметри <F- ZrO₂> змінюються від *a* = 0.5142 нм для граничного складу твердого розчину (F-ZrO₂), що містить 85 мол.% ZrO₂-7.5 мол.% CeO₂до а = 0,5193 нм 7.5 мол.% Yb_2O_3 для двофазного зразка (F + δ), що містить 60 мол.% ZrO₂-20 мол.% CeO₂-20 мол.% Yb₂O₃ (табл., рис. 3). 3 використанням концентраційну залежність параметрів елементарних комірок F-фази встановлено, що область гомогенності твердих розчинів основі F-ZrO₂ на простягається від 64 до 89 мол.% ZrO2 за ZrO₂-(50 мол.% СеО2-50 мол.% перерізом Yb₂O₃) (рис 3).

Фаза зі структурою типу флюориту присутня у двофазних (C + F), (T + F), (F + δ) і трифазній (F + C + δ) областях.

У потрійній системі ZrO₂–CeO₂–Yb₂O₃ при температурі 1500 °С присутня упорядкована фаза ромбоедричної структури. Гранична розчинність церій (IV) оксиду в δ-фазі складає 12 мол.% за перерізом CeO₂-(60 мол.% ZrO₂-40 мол.% Yb₂O₃). Область гомогенності на основі ZrO₂ у δ-фази, так саме, як і у подвійній системі ZrO₂-Yb₂O₃, відсутня. Фазовий склад зразків інтерпретується даними однозначно рентгенівського аналізу (табл.). Параметри елементарної комірки упорядкованої δ-фази змінюються від *a* = 0.9654 нм, *c* = 0.8935 нм для однофазного зразка, що містить 59.4 мол.% ZrO₂-1 мол.% CeO₂-39.6 мол.% Yb₂O₃ до *a* = 0.9742 нм, *с* = 0.9012 нм для двофазного зразка (F + δ), що містить 51 мол.% ZrO₂-15 мол.% CeO_2 -34 мол.% Yb_2O_3 та до a = 0.9759 нм, c =0.9036 нм для трифазного зразка (F + C + δ), що містить 48 мол.% ZrO₂-20 мол.% CeO₂-32 мол.% Yb₂O₃ (табл.).

Рис. 2 Концентраційні залежності параметрів елементарних комірок твердих розчинів типу флюориту (F) за перерізом ZrO₂-(85 мол.% CeO₂-15 мол.% Yb₂O₃) у системі ZrO₂-CeO₂-Yb₂O₃ після відпалу зразків при 1500 °C Fig. 2 Concentration dependences of lattice parameters for solid solutions based on fluorite-type (F) along the ZrO₂-(85 mol % CeO₂-15 mol % Yb₂O₃) section in the system ZrO₂-CeO₂-Yb₂O₃ heat treated at 1500 °C

Рис. 3. Концентраційні залежності параметрів елементарних комірок твердих розчинів типу флюориту (F) за перерізом ZrO₂-(50 мол.% CeO₂-50 мол.% Yb₂O₃) у системі ZrO₂-CeO₂-Yb₂O₃ після відпалу зразків при 1500 °C Fig. 3. Concentration dependences of lattice parameters for solid solutions based on fluorite-type (F) along the ZrO₂-(50 mol% CeO₂-50 mol% Yb₂O₃) section in the system ZrO₂-CeO₂-Yb₂O₃ heat treated at 1500 °C

Puc. 4. – Концентраційні залежності параметрів елементарних комірок твердих розчинів типу флюориту (F-CeO₂, ●) за перерізом CeO₂-(60 мол.% ZrO₂-40 мол.% Yb₂O₃) у системі ZrO₂-CeO₂-Yb₂O₃ після відпалу зразків при 1500 °C Fig. 4. Concentration dependences of lattice parameters for solid solutions based on fluorite-type (F) along the CeO₂-(60 mol% CeO₂-40 mol% Yb₂O₃) section in the system ZrO₂-CeO₂-Yb₂O₃ heat treated at 1500 °C

Рис. 5. – Концентраційні залежності параметрів елементарних комірок кубічних твердих розчинів C-Yb₂O₃, за перерізом Yb₂O₃-(60 мол.% ZrO₂-40 мол.% CeO₂) після відпалу зразків при 1500 °C Fig. 5 Concentration dependences of lattice parameters for solid solutions based on C-Yb₂O₃ along the Yb₂O₃-(60 mol% ZrO₂-40 mol% CeO₂) section in the system ZrO₂-CeO₂-Yb₂O₃ heat treated at 1500 °C

CeO₂-85 mol% Yb₂O₃) section in the system ZrO₂-CeO₂-Yb₂O₃ heat treated at 1500 °C

Отже, з отриманих даних щодо будови ізотермічного перерізу діаграми стану потрійної системи ZrO₂-CeO₂-Yb₂O₃ випливає, що за температури 1500 °C утворюються області гомогенності твердих розчинів на основі вихідних компонентів різної протяжності, а також упорядкована δ-фаза. Найбільшу площу ізотермічного перерізу займають тверді розчини типу флюориту. Область гомогенності кубічних твердих розчинів на основі С-Yb₂O₃ направлена у бік кубічних розчинів типу флюориту, оскільки вони мають подібну структуру кристалічних ґраток. Незначну площу ізотермічного перерізу займають області гомогенності на розчину основі твердого T-ZrO₂ та упорядкованої фази $Zr_3Yb_4O_{12}$ (δ).

Висновки

За допомогою методу рентгенофазового аналізу вперше досліджено фазові рівноваги в потрійній системі ZrO₂-CeO₂-Yb₂O₃ та побудовано ізотермічний переріз зазначеної діаграми стану при 1500 °C. Внаслідок термодинамічної стабільності упорядкованої фази Zr₃Yb₄O₁₂ (δ) ізотермічний переріз потрійної діаграми стану потрійної системи ZrO₂-CeO₂-Yb₂O₃ характеризується наявністю однієї трифазної області (C + F + δ). Гранична розчинність церій (IV) оксиду в δ- фазі складає 12 мол.% за перерізом CeO₂-(60 мол.% ZrO₂-40 мол.% Yb₂O₃). Встановлено, що ізотермічний переріз потрійної діаграми стану системи ZrO₂-CeO₂-Yb₂O₃ за 1500 °С характеризується безперервного утворення ряду твердих розчинів на основі фази типу флюориту. Отримані результати можуть бути використані для вибору оптимальних складів одержання нових керамічних 3 метою матеріалів з покращеними властивостями конструкційного функціонального та призначення.

Table

Phase Composition and Lattice Parameters of the Phases in the ZrO₂-CeO₂-Yb₂O₃ System, Annealed at 1500°C for 150 hin Air (X-Ray Diffraction (XRD) Data)

Таблиця

Хімічний і фазовий склад, параметри елементарних комірок фаз системи ZrO2-CeO2-Yb2O3 після випалу
зразків за 1500 °C, 150 год. (за даними РФА)

зразків за 1500 °С, 150 год. (за даними гФА)					
Хімічний склад, мол. %			Фазовий склад і параметри елементарних комірок, нм за даними РФА	Параметри елементарних комірок фаз, нм	
				$(a \pm 0.0002)$	
ZrO_2	CeO ₂	Yb_2O_3		<f></f>	<c></c>
				а	а
1	2	3	4	5	6
			Переріз ZrO2 - (50 мол. % СеО2 - 50 мол. % Yb2O3)		
5	47.5	47.5	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5317	-
10	45	45	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5294	-
15	42.5	42.5	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5285	-

1	Δ	q
-	-	2

				Продовження таблиці	
1	2	3	4	5	6
20	40	40	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5279	-
25	37.5	37.5	$ + + \delta$	0.5265	-
30	35	35	$< F - (PO) > + < (-Yb)O > + \delta$	0 5265	-
25	22 5	22 5	E CoOrs + cC VbrOrs + S	0.5205	
	32.5	32.5	<f-ceu2> + <c-fu2u3> + 8</c-fu2u3></f-ceu2>	0.5260	-
40	30	30	$ + + \delta$	0.5264	-
45	27.5	27.5	<f-ceo<sub>2> + δ</f-ceo<sub>	0.5236	-
50	25	25	<f-zro<sub>2> + δ</f-zro<sub>	0.5236	-
55	22.5	22.5	<f-zro<sub>2> + δ</f-zro<sub>	0.5195	-
60	20	20	<f-7rω2> + δ</f-7rω2>	0 5193	-
65	175	175	$\sim E 7r \Omega_{\rm e}$	0.5195	
03	17.5	17.5	<f-2102></f-2102>	0.5164	-
/0	15	15	<f-zru2></f-zru2>	0.51//	-
75	12.5	12.5	<f-zr0<sub>2></f-zr0<sub>	0.5164	-
80	10	10	<f-zro<sub>2></f-zro<sub>	0.5153	-
85	7.5	7.5	<f-zr0<sub>2></f-zr0<sub>	0.5142	-
90	5	5	$\langle F-ZrO_{2} \rangle + \langle T-ZrO_{2} \rangle (a = 0.5120, c = 0.5137)$	0.5132	-
95	25	25	$\sim E 7r_{0} > 1 + CT 7r_{0} > * ocu$	0.5130	
	2.5	2.5		0.5150	_
96		<u> </u>	<1-ZfU2>+ + <f-zfu2>↓</f-zfu2>	0.5130	-
97	1.5	1.5	<1-ZrO ₂ >* + <f-zro<sub>2> сл. ↓↓</f-zro<sub>	0.5128	-
98	1	1	<t-zro2>*</t-zro2>	-	-
99	0.5	0.5	<t-zro<sub>2>*</t-zro<sub>	-	-
			Переріз ZrO2 - (15 мол. % СеО2 - 85 мол. % Yb2O3)		
5	14.25	80.45	<c-yh2o2></c-yh2o2>	-	1 0457
10	125	76 5	<c 152035<="" td=""><td></td><td>1.0457</td></c>		1.0457
10	13.5	70.5	<6-10203>	-	1.0452
15	12.75	72.25	<c-yb2o3></c-yb2o3>	-	1.0442
20	12	68	<c-yb<sub>2O₃></c-yb<sub>	-	1.0430
25	11.25	63.75	<c-yb<sub>2O₃> + δ</c-yb<sub>	-	1.0432
30	10.5	59.5	<c-yh2o3> + δ</c-yh2o3>	-	1.0430
35	9.75	975	$\langle C - Y h_2 \Omega_2 \rangle + \delta$	-	1 0428
40	0	5.75 E1	<0.102032 + 0 <0.2012 + 0		1.0420
40	9	51	< <u>(-10203>+0</u>	-	1.0425
45	8.25	46.75	<c-yb2u3> + δ</c-yb2u3>	-	1.0420
50	7.5	42.5	<c-yb<sub>2O₃> + δ</c-yb<sub>	-	1.0418
55	6.75	38.25	δ	-	-
60	6	34	$\langle F-ZrO_2 \rangle + \delta$	0.5177	-
65	5 2 5	2975	<f-zrω2> + δ</f-zrω2>	0 5174	-
70	4.5	25.5	F 7r02	0.5171	
70	4.5	23.3		0.5100	-
/5	3.75	21.25	<f-zru2></f-zru2>	0.5155	-
80	3	17	<f-zr0<sub>2></f-zr0<sub>	0.5145	-
85	2.25	12.75	<f-zro<sub>2></f-zro<sub>	0.5135	-
90	8.5	1.5	<f-zro<sub>2></f-zro<sub>	0.5130	-
95	0.75	4.25	<f-zrq2> осн. + <t-zrq2>*</t-zrq2></f-zrq2>	0.5123	-
			Переріз 7гО2 - (85 мод % СеО2 - 15 мод % УраО2)		
F	00 7F	14.25		0 5266	
	80.73	14.25		0.3300	-
10	/6.5	13.5	<f-leu<sub>2></f-leu<sub>	0.5352	-
15	72.5	12.75	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5356	-
20	68	12	<f-ceo<sub>2> + <c-yb<sub>2O₃>+ δ</c-yb<sub></f-ceo<sub>	0.5323	-
25	63.75	11.25	<f-ceo<sub>2> + δ</f-ceo<sub>	0.5323	
30	59.5	10.5	<f-ceo<sub>2> + δ</f-ceo<sub>	0.5319	-
35	55 25	975	<f-ceo2> + 8</f-ceo2>	0 5283	-
<u> </u>	55.25	0		0.5205	
40		7		0.3474	-
45	46./5	8.25	<r-leo2> + 0</r-leo2>	0.5249	-
50	46.75	8.25	<f-ceu<sub>2></f-ceu<sub>	0.5246	-
55	38.25	6.75	<f-ceo<sub>2></f-ceo<sub>	0.5232	-
60	34	6	<f-ceo<sub>2></f-ceo<sub>	0.5223	-
65	29.75	5.25	<f-ceo2></f-ceo2>	0.5211	-
70	25 5	4 5	<f-ceo2></f-ceo2>	0 5198	-
75	20.5	2.75	$< F_{-}(\Delta \Omega_{0}) + < T 7r\Omega_{0} < (\alpha - 0.5120, \alpha - 0.5170)$	0.5100	
/ 5	41.45	3.75	r - U = U = U = U = U = U = U = U = U = U	0.5188	-
80	17	3	$ + (a = 0.5136, c = 0.5181)$	0.5182	-
85	12.75	2.25	<f-ceo<sub>2> + <t-zro<sub>2>** (<i>a</i> = 0.5129, <i>c</i> = 0.5170)</t-zro<sub></f-ceo<sub>	0.5153	-
90	8.5	1.5	<f-ceo<sub>2> + <<u>T-ZrO₂> ** (a = 0</u>.5129, c = 0.5167)</f-ceo<sub>	0.5142	-
95	4.25	0.75	<f-ceo<sub>2> + <t-zro<sub>2>** (<i>a</i> = 0.5125. <i>c</i> = 0.5176)</t-zro<sub></f-ceo<sub>	0.5120	-
	-		Переріз СеО2 - (60 мол % ZrO2 - 40 мол % Yb2O2)		
50 <i>1</i> .	1	30.6	$\delta(a = 0.9654, c = 0.8935)$		-
59.4	2	39.0	u = 0.7034, u = 0.0733J	-	-
58.8	Z	39.2	o (<i>a</i> = 0.9665, <i>c</i> = 0.8942)	-	-

Journal of Chemistry and Technologies, 2020, 28(2), 142-152

				Продовжен	ня таблиці
1	2	3	4	5	6
58.2	3	38.8	δ (<i>a</i> = 0.9664, <i>c</i> = 0.8948)	-	-
57.6	4	38.4	δ (<i>a</i> = 0.9676, <i>c</i> = 0.8956)	-	-
57	5	38	δ (<i>a</i> = 0.9684, <i>c</i> = 0.8966)	-	-
54	10	36	δ (<i>a</i> = 0.9720, <i>c</i> = 0.8994)	-	-
51	15	34	$<$ F-CeO ₂ >+ δ (<i>a</i> = 0.9742, <i>c</i> = 0.9012)	0.5318	-
48	20	32	$<$ F-CeO ₂ >+ $<$ C-Yb ₂ O ₃ >+ δ (<i>a</i> = 0.9759, <i>c</i> = 0.9036)	0.5327	-
45	25	30	$<$ F-CeO ₂ >+ $<$ C-Yb ₂ O ₃ >+ δ (<i>a</i> = 0.9762, <i>c</i> = 0.9035)	0.5328	-
42	30	28	$<$ F-CeO ₂ >+ $<$ C-Yb ₂ O ₃ >+ δ (<i>a</i> = 0.9813, <i>c</i> = 0.9028)	0.5324	-
39	35	26	$<$ F-CeO ₂ > + $<$ C-Yb ₂ O ₃ > + δ (<i>a</i> = 0.9629, <i>c</i> = 0.9160)	0.5324	-
36	40	24	$<$ F-CeO ₂ >+ $<$ C-Yb ₂ O ₃ >+ δ (<i>a</i> = 0.9672, <i>c</i> = 0.8958)	0.5326	-
33	45	22	$<$ F-CeO ₂ >+ $<$ C-Yb ₂ O ₃ >+ δ (<i>a</i> = 0.9694, <i>c</i> = 0.8977)	0.5324	-
30	50	20	$\langle F-CeO_2 \rangle + \langle C-Yb_2O_3 \rangle + \delta$	0.5325	-
27	55	18	$\langle F-CeO_2 \rangle + \langle C-Yb_2O_3 \rangle + \delta$	0.5328	-
24	60	16	$\langle F-CeO_2 \rangle + \langle C-Yb_2O_3 \rangle + \delta$	0.5322	-
21	65	14	$\langle F-CeO_2 \rangle + \langle C-Yb_2O_3 \rangle + \delta$	0.5326	-
18	70	12	<f-ceo<sub>2> + <c-yb<sub>2O₃></c-yb<sub></f-ceo<sub>	0.5334	-
15	75	10	<f-ceo<sub>2></f-ceo<sub>	0.5340	-
12	80	8	<f-ceo<sub>2></f-ceo<sub>	0.5355	-
9	85	6	<f-ceo<sub>2></f-ceo<sub>	0.5368	-
6	90	4	<f-ceo<sub>2></f-ceo<sub>	0.5382	-
3	95	2	<f-ceo<sub>2></f-ceo<sub>	0.5393	-
			Переріз Yb2O3 - (60 мол. % ZrO2 - 40 мол. % CeO2)		
60	40	0	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5299	-
59.4	39.6	1	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5231	-
58.8	39.2	2	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5237	-
58.2	38.8	3	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5238	-
57.6	38.4	4	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5231	-
57	38	5	<f-ceo<sub>2> + <t-zro<sub>2></t-zro<sub></f-ceo<sub>	0.5229	-
54	36	10	<f-ceo<sub>2></f-ceo<sub>	0.5231	-
51	34	15	<f-ceo2> + 6 сл.</f-ceo2>	0.5223	-
48	32	20	<f-ceo<sub>2> + δ</f-ceo<sub>	-	-
45	30	25	<f-ceo₂> + δ↑</f-ceo₂>	-	-
42	28	30	$<$ F-CeO ₂ > + $<$ C-Yb ₂ O ₃ > + δ	-	1.0444
39	26	35	$<$ F-CeO ₂ > + $<$ C-Yb ₂ O ₃ > + δ	-	1.0447
36	24	40	$\langle F-CeO_2 \rangle + \langle C-Yb_2O_3 \rangle + \delta$	-	1.0446
33	22	45	<f-ceo<sub>2> + <c-yb<sub>2O₃> + δ</c-yb<sub></f-ceo<sub>	-	1.0446
30	20	50	$<$ F-CeO ₂ > + $<$ C-Yb ₂ O ₃ > + δ	-	1.0444
27	18	55	$ + + \delta$	-	1.0447
24	16	60	<c-yb<sub>2O₃></c-yb<sub>	-	1.0445
21	14	65	<c-yb2o3></c-yb2o3>	-	1.0442
18	12	70	<c-yb<sub>2O₃></c-yb<sub>	-	1.0441
15	10	75	<c-yh2o3></c-yh2o3>	-	1.0436
12	8	80	< <u>(</u> Yh2O3>	-	1.0437
9	6	85	<c-yh2o3></c-yh2o3>	-	1.0431
6	4	90	<c-yh2o3></c-yh2o3>	_	1.0430
3	2	95	<c-yh2o3></c-yh2o3>	-	1.0427
0	0	100	< <u>(-Yh2O3</u>)		1.0425
0	0	100	Ізоконцентрата 20 мол % 7rO2		110 120
20	5	75	<c-yh2o2></c-yh2o2>	-	1 0418
20	10	70	<c-yh2o2></c-yh2o2>	-	1.0110
20	20	60		-	1 0447
20	25	55	C 10203 + 1 0002 C-VhaNas + <f.canas <="" p=""></f.canas>	0 5266	1 0457
20	20	50		0.5200	1 0461
20	25	<u> </u>		0.5209	1 0466
20	35	40 25	へして10203イ エトビーンゼロ22 くびしたいので、エンビビルので、	0.5270	1 0562
20	45 50	20	>U-102032 T \F-UEU22	0.5201	1 0505
20	50	30 2E		0.3204	1.03/3
20	22	20	\sim IU2U3> + \sim F-U2U2>	0.329/	-
20	70	20	<	0.5310	-
20	/0	10	<l-yd2u3> + <f-l0u2>+0</f-l0u2></l-yd2u3>	0.5325	-
20	/5	5	<r-ceu2></r-ceu2>	0.5340	-
20	80	U	<r-ceo2></r-ceo2>	0.5351	-

^{*}За заданих умов (T = 1500 °C, 150 год., на повітрі) тетрагональна (T) модифікація ZrO₂ не загартовується, замість неї спостерігали утворення моноклінної (M) модифікації ZrO₂;

* Спостерігали часткову стабілізацію T-ZrO₂. Умовні позначення фаз: <T> – тверді розчини на основі тетрагональної модифікації ZrO₂; <C> – тверді розчини на основі кубічної модифікації Yb₂O₃; <F> – тверді розчини на основі кубічної модифікації Yb₂O₃; <F> – тверді розчини на основі кубічної модифікації 3 структурою типу флюориту CeO₂(ZrO₂); δ – упорядкована фаза Zr₃Yb₄O₁₂ ромбоедричної структури. *Notes*: <T> is a solid solution based on the tetragonak modification of ZrO₂, <C> is a solid solution based on the cubic fluorite-type modification of CeO₂(ZrO₂); δ - intermediate phase with orhombohedral structure Zr₃Yb₄O₁₂. *Tetragonal T-ZrO₂ modification does not quench in conditions in question (*T* = 1500°C, 150 h in air) and monoclinic M-ZrO₂ forms instead. ** Partial stabilization of T-phases was observed.

Bibliography

- [1] Phase equilibria in the Systems with ZrO₂, CeO₂ and Dy₂O₃/ Z. Haladzhun, O. Trishchuk, N. Figol [et al.] // Innovative scientific researches: European development trends and regional aspect. – 4th ed. – Riga, Latvia : "Baltija Publishing", 2020. – 260 p.
- [2] Phase Equilibria in the ZrO₂-La₂O₃-Gd₂O₃ System at 1600°C / E.R.Andrievskaya, O.A.Kornienko, A.I. Bykov, A.V. Sameluk // Powder Metall. Met. Ceram.- 2020 – V. 58, N 11/12. – P. 714–724.
- [3] ZrO₂ 9.5Y₂O₃ 5.6Yb₂O₃ 5.2Gd₂O₃; a promising TBC material with high resistance to hot corrosion /M. Bahamirian , S.M.M. Hadavi , M. [et al.] // Journal of Asian Ceramic Societies 2020. V. 8. № 3 P. 898–908.
- [4] High Temperature Yb₂O₃-ZrO₂ Insulation Coatings on Ag Tapes for Magnet Technology / M. Kaplan, M. F. Ebeoglugil, I. Birlik [et al.] // Afyon Kocatepe University Journal of Science and Engineering - 2014 – V. 14. – P. 117–128.
- [5] Корнієнко О.А.. Фазові рівноваги в системі ZrO₂-CeO₂-Dy₂O₃ при температурі 1500 °C / О.А. Корнієнко// Вісник Одеського Національного університету. Серія Хімія. – 2019. – V. 24., N 2 (70). – Р. 71–83.
- [6] Yoshimura M. The confirmation of phase equilibria in the system ZrO₂ -CeO₂ below 1400 °C / M. Yoshimura, E. Tani, S. Somiya // Solid State Ionics.- 1981- N3/4. – P. 477–481.
- [7] Tani E. Revised phase diagram of the system ZrO₂ -CeO₂ below 1400 °C. /E. Tani, M. Yoshimura, S. Somiya // J. Am. Ceram. Soc. – 1983 - V. 66, 7. – P. 506–510.
- [8] A new tentative phase equilibrium diagram for the ZrO₂
 CeO₂ system in air. / P. Duran, M. Gonzales, C. Moure
 [et al.] // J. Mater. Sci. 1990 V. 25. P. 5001–5006.
- [9] X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb₂O₃- and Tm₂O₃- substituted CeO₂ / B. P. Mandal, V. Grover, M. Roy, A. K. Tayagi // Journal of Amer. Soc.- 2007. - Vol. 90, N 9. - P 2961 – 2965.
- [10] Adachi G. The binary rare earth oxides / G. Adachi, N. Imanaka // Chemical Reviews - 1998. - V. 98. - P. 1479 – 1514.
- [11] Andrievskaya E. R. of ceria and ytterbia in air within temperature range 1500 –600 °C/ E. R. Andrievskaya, O. A. Kornienko, O. I. Bykov, A. V. Sameliu, Z. D. Bohatyriova // J. of the Europ. Ceram. Soc. – 2019. – V.39. – P. 2930– 2935.
- [12] Корнієнко О.А. Взаємодія оксидів церію та ітербію при 1100 °С / О. А. Корнієнко // Вісник Дніпропетровського університету. Серія Хімія – 2016. – Вип. 24(2). – С. 94–101.
- [13] Thormber M.R. Summerville E. Mixed oxides of hte typy MO₂ (fluorite) – M₂O₃ very phase studies in the system ZrO₂-M₂O₃ (M=Sc, Yb, Er, Dy) / M. R. Thormber, D. J. M. Bevan // J. Solid State Chem. – 1970. – V. 1. – P. 545–553.
- [14] Rouanet A. Contribution a l'etude des systemes zirconia
 oxydes des lanthanides au voisinage de la fusion: Memoire de these / A. Rouanet // Rev. Intern. Hautes Temper. et Refract. – 1971. – V. 8, № 2. – P. 161–180.

- [15] Fabrichnaya O. Thermodynamic assessment of the ZrO₂-Yb₂O₃-Al₂O₃ system / O. Fabrichnaya , H. J. Seifert H. J. // Calphad – 2010. – V. 34. – P. 206–214.
- [16] Perez Structural and Chemical Characterization of Yb₂O₃-ZrO₂ System by HAADF-STEM and HRTEMC / C. Angeles-Chavez, P. Salas, L.A. Díaz-Torres [et al.] // Microsc. Microanal. – 2009 – V. 15. – P. 46–53.
- [17] Corman G. S. Phase Equilibria and Ionic Conductivity in the System ZrO₂-Yb₂O₃-Y₂O₃ / G. S. Corman, V. S. Stubican // Journal of the American Ceramic Society – 1985. – V. 68 – Iss. 4. – P. 174–181.
- [18] Lopato L. M. Synthesis of some tsirkanatov (gafnata) REE / L. M. Lopato, V. P. Red'ko, G. I. Gerasimuk // Powd. Metall. and Metal Ceram. – 1990. – № 4 – P. 73–75.
- [19] Lakiza S. M. The Al₂O₃-ZrO₂-Yb₂O₃ phase diagram. I. Isothermal sections at 1250 and 1650°C / S. M. Lakiza, V. P. Red'ko, L. M. Lopato // Powder Metallurgy and Metal Ceramics - 2008. - V. 47, No. 3/4. - P. 60-69.
- [20] Experimental Investigation of Phase Relations in the ZrO₂-La₂O₃-Yb₂O₃ System // M. Ilatovskaia, S. Sun, I. Saenko [et al.] / J. Phase Equilib. Diffus. – 2020. – V.41. - P. 311–328
- [21] New Experimental Investigations of Phase Relations in the Yb₂O₃-Al₂O₃ and ZrO₂-Yb₂O₃-Al₂O₃ Systems and Assessment of Thermodynamic Parameters/ O. Fabrichnaya, S.M. Lakiza, M.J. Kriegel [et al.] // *J. Eur. Ceram. Soc.* – 2015. – V.35. – P. 2855–2871.
- [22] Lakiza S. M. Physicochemical materials research Al₂O₃-ZrO₂-Yb₂O₃ Phase diagram. IV. Vertecal sections. / Lakiza S. M., Red'ko V. P, and Lopato L. M. // Powd. Metall. and Metal Ceram. – 2008. – V. 47, N. 9/10. – P. 577 – 585.
- [23] Mass Spectrometric Study of Thermodynamic Properties in the Yb₂O₃-ZrO₂ System at High Temperatures / V.L. Stolyarova, S.I. Lopatin, O.B. Fabrichnaya, and S.M. Shugurov // Rapid Commun. Mass Spectrom. – 2014. – V. 28. – P. 109–114.
- [24] Solid-state reaction, microstructure and phase relations in the ZrO₂-rich region of the ZrO₂-Yb₂O₃ system / M. Gonzalez, C. Moure, J. R. Jurado, P. Duran // J. Mater. Sci. – 1993. – V. 28. – P. 3451–3456.
- [25] Фазовые равновесия в системе ZrO₂ -Yb₂O₃ при 1100 °C / О. А. Корниенко, Е. Р. Андриевская, А. И. Быков, Ж. Д. Богатырева // Вісник Одеського національного університету. Серія хімія. - 2018. -Том 23. - № 1 (65). - С. 83-95.

References

- Haladzhun, Z., Trishchuk, O., Figol, N., Volyk, N., Bandazheuski, Y., Dubovaya, N. (2020). Phase equilibria in the Systems with ZrO₂, CeO₂ and Dy₂O₃. *Innovative* scientific researches: European development trends and regional aspect. – 4th ed. – Riga, Latvia : "Baltija Publishing", 260, ISBN: 978-9934-588-38-9 https://doi.org/10.30525/978-9934-588-38-9-58.
- [2] Andrievskaya, E.R., Kornienko, O.A., Bykov, A.I., Sameluk, A.V. (2020). Phase Equilibria in the ZrO₂-La₂O₃-Gd₂O₃ System at 1600°C. *Powder Metall. Met. Ceram.* 58(11/12), 714–724. <u>https://doi.org/10.1007/s11106-020-00128-7.</u>

- [3] Bahamirian, M., Hadavi, S.M.M., Farvizi, M., Keyvani, A., Rahimipour, M.R. (2020). ZrO₂ 9.5Y₂O₃ 5.6Yb₂O₃ 5.2Gd₂O₃; a promising TBC material with high resistance to hot corrosion. *J. of Asian Ceram. Societ.* <u>https://doi.org/</u>I: 10.1080/21870764.2020.1793474.
- [4] Mustafa, KAPLAN, Mehmet Faruk EBEOĞLUGİL, Işıl BİRLİK, Recep YİGİT, Erdal ÇELİK and Eşref AVCİ High (2014) Temperature Yb₂O₃-ZrO₂ Insulation Coatings on Ag Tapes for Magnet Technology. *Afyon Kocatepe University Journal of Science and Engineering* 14, 117-128.
- [5] Kornienko, O. (2019). Phase relations studies in the ZrO_2 - CeO_2 - Dy_2O_3 system at 1500 °C. Odesa National University Herald. Chemistry. 24, 2 (70), P 71-83. https://doi.org/10.18524/2304947.2019.2(70).16923 1
- [6] Yoshimura, M., Tani, E., Somiya, S. (1981). The confirmation of phase equilibria in the system ZrO₂ -CeO₂ below 1400 °C. *Solid State Ionics*. 3/4, 477–481.
- [7] Tani E., Yoshimura M., Somiya S. (1983). Revised phase diagram of the system ZrO₂ -CeO₂ below 1400 °C. J. Am. Ceram. Soc. 66 (7), 506–510.
- [8] Duran P., Gonzales M., Moure C., Jurado J.R., Pascual C. (1990). A new tentative phase equilibrium diagram for the ZrO₂ - CeO₂ system in air. *J. Mater. Sci.* 25, 5001– 5006.
- [9] Mandal, B. P. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb₂O₃- and Tm₂O₃- substituted CeO₂. *J. of Amer. Soc. 90* (9), 2961 – 2965.
- [10] Adachi, G., Imanaka, N. (1998). The binary rare earth oxides. *Chemical Reviews*. 1479 – 1514.
- [11] Andrievskaya, E. R., Kornienko, O. A., Bykov, O. I., Sameliu, A. V., Bohatyriova Z. D. (2019). Interaction of ceria and ytterbia in air within temperature range 1500 -600 °C. J. of the Europ. Ceram. Soc. 39, 2930–2935.
- [12] Kornienko, O.A. (2016). Interaction of the ceria with ytterbia at temperature 1100 °C Bulletin of Dnipropetrovsk University. Series Chemistry. 24(2), 94– 101.
- [13] Thormber, M.R., Bevan, D.J.M. (1970). Summerville E. Mixed oxides of hte typy MO₂ (fluorite) – M₂O₃ very phase studies in the system ZrO₂-M₂O₃ (M=Sc, Yb, Er, Dy). *J.Solid State Chem.* 1, P.545–553.
- [14] Rouanet, A. (1971). Contribution a l'etude des systemes zirconia - oxydes des lanthanides au voisinage de la fusion: Memoire de these. *Rev. Intern. Hautes Temper. et Refract. 8 (2)*, 161-180.

- [15] Fabrichnaya, O., Seifert, H. J. (2010). Thermodynamic assessment of the ZrO₂-Yb₂O₃-Al₂O₃ system. *Calphad.* 34, 206–214.
- [16] Angeles-Chavez, C., Salas, P., Díaz-Torres, L.A., E. de la Rosa, Esparza, R., Perez, R. (2009). Structural and Chemical Characterization of Yb₂O₃-ZrO₂ System by HAADF-STEM and HRTEMC. *Microsc. Microanal.* 15, 46– 53.
- [17] Corman G. S., Stubican V. S. (1985). Phase Equilibria and Ionic Conductivity in the System ZrO₂-Yb₂O₃-Y₂O₃. *J. of the Amer. Ceram. Soc.* 68 (4), 174–181. DOI: 10.1111/j.1151-2916.1985.tb15293.x
- [18] Lopato L. M., Red'ko V. P., Gerasimuk G. I. (1990). Synthesis of some tsirkanatov (gafnata) REE. *Powder Metall. and Metal Ceram.* 4, 73-75.
- [19] Lakiza S. M., Red'ko V. P., Lopato L. M. (2008). The Al₂O₃– ZrO₂–Yb₂O₃ phase diagram. I. Isothermal sections at 1250 and 1650°C. *Powder Metall. and Metal Ceram.* 47 (3/4), 60–69. <u>https://doi.org/10.1007/s11106-008-9006-6</u>
- [20] Ilatovskaia M., Sun S., Saenko I., Savinykh G, Fabrichnaya O. (2020) Experimental Investigation of Phase Relations in the ZrO₂-La₂O₃-Yb₂O₃ System *J. Phase Equilib. Diffus.* 41, 311–328 <u>https://doi.org/10.1007/s11669-020-00790-9</u>.
- [21] Fabrichnaya O., Lakiza S.M., Kriegel M.J., Seidel J., Savinykh G., Schreiber G. (2015) New Experimental Investigations of Phase Relations in the Yb₂O₃-Al₂O₃ and ZrO₂-Yb₂O₃-Al₂O₃ Systems and Assessment of Thermodynamic Parameters *J. Eur. Ceram. Soc. 35*, 2855–2871.

https://doi.org/10.1016/j.jeurceramsoc.2015.03.037

- [22] Lakiza S. M.,. Red'ko V. P., Lopato L. M. (2008). Physicochemical materials research Al₂O₃-ZrO₂-Yb₂O₃ Phase diagram. IV. Vertecal sections. Powder Metall. and Metal Ceram. 47 (9/10), 577–585.
- [23] Stolyarova V.L., Lopatin S.I., Fabrichnaya O.B., Shugurov S.M. (2014) Mass Spectrometric Study of Thermodynamic Properties in the Yb₂O₃-ZrO₂ System at High Temperatures. *Rapid Commun. Mass Spectrom. 28*, 109–114.
- [24] Gonzalez M., Moure C., Jurado J. R., Duran P. (1993). Solid-state reaction, microstructure and phase relations in the ZrO₂-rich region of the ZrO₂-Yb₂O₃ system. *J. Mater. Sci. 28*, 3451–3456. DOI: 10.1007/BF01159821
- [25] Kornienko O.A., Andrievskaya O.R., Bykov O.I., Bohaturyva J. D. (2018). Phase equilibria in the ZrO₂ – Yb₂O₃ system at 1100 °C. Odesa National University Herald. Chemistry. 23(1), 83–95.