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Annotation

Among the chemicals emitted to the atmosphere, volatile organic compounds (VOCs) are classified worldwide as
hazardous air pollutants. Most of the VOCs are organochlorine compounds, widely used in industryas the
components of detergents and degreasers, chemical extractants, additives for paints, inks and adhesives, raw
materials for drug synthesis, pesticides and polymers, solvents for chemicalsand paint strippers. These compounds
are released into the atmosphere and pose a significant health hazard due to their pronounced toxicity, high
stability and persistence in the environment. In this study, a total of 6 different metal monoliths containing y-Al203
were studied in the oxidation of dichloromethane (DCM) and tetrachlorethylene (perchlorethylene-PCE). Pt, Pd,
separately, were used as the active substances. Before the research experiments of the catalysts have been started,
the water supply was optimized. Among the studied catalysts, Pt/Al203 was the most active in the oxidation of DCM.
Keywords: catalytic oxidation; chlorinated volatile organic compound; dichloromethane; tetrachloroethylene.

KATAJITUYHE OKUCHEHHA IMX/IOPOMETAHA TA TETPAX/IOPOETHJ/IEHA HA
KATAJIBATOPAX I3 BJIATOPOJAHUX METAJIIB

Ipanal. MenikoBa, Api} [Ixx. Ebenpi, Enmup M. Ba6aes, Airtaaxk M. Canaxau, Konya Il Mycasage,
AcmeT H. A3u30Ba, ['yceitn M. ®apapxeB

IHcmumym kamasiza ma HeopeaHivyHOI Ximii imeHi akademika M. Haziesa HayioHanvHoi akademii Hayk
Azep6atioxncama, Az1143, baky 143, np. I. [lscasida, 113.

AHoTanis

Cepep, xiMiYyHMX pedYyoBMH, SIKi moTpamiAlwTb A0 aTtMochepH, JjeTki opraHiuHi cmoayku (JIOC) y Bchbomy cBiTi
KJIacuQikyoThcs AK HeGe3ne4yHi 3a6pyAHIOBavi noBirpsa. Bax/imBow rpynoiw JIOC € xJiopoopraHidyHi cnoayku, o
IIMPOKO BUKOPHUCTOBYIOTbCA Yy NMPOMHUCJOBOCTI, Y TaKHX rajy3fX, IK BUPOGHUITBO MHIOYHX Ta 3HEKHMPHIOIOYHX
3ac06iB; y AKOCTI eKcTpareHTiB, J06aBOK A0 GapBHMKIB, YOPHMJI Ta KJIeiB; AK CHPOBHHA JAJIA CHHTe3a JIiKapChbKix
3ac06iB, necTUM/IB Ta nojiMepiB; IK po34YMHHUKU. HasBHICTh BUX CHOJIYK y NOBITpi ABJIsAE€ 3HAaYHY He6Ge3NneKy A5
340pOB’Sl JIOAMHU 3-3a BUPA)KEHOI TOKCHUYHOCTi, BHMCOKOi CTaGiILHOCTI Ta CTIMKOCTIi y HaBKOJMIIHbOMY
cepejoBulli. Y AaHili po6oTi Jociaig)keHa KaTajliTUYHAa aKTHUBHICTh LI0J40 peaKlilli OKMCHEHHS AMXJIOpOMeTaHa
(DCM) Ta nepxjopoetuneHa (PCE) sarajom mecru MeTasqiB 3i BMicroM y-Alz203. Y sAKocTi aKTMBHMX pPe4YOBUH
BUKopHcToBYBaau Pt i Pd okpemo. /lo noyaTKy ekcnepuMMeHTIB i3 KaTaJji3aTopaMHu ONTHUMIi3yBa/u MoAa4yy BOAH.
Haii6inbm akTMBHUM 1040 OKMcHeHHs1 DCM cepej aoc/iKeHUX BUABUB ceGe KaTasiszaTtop Pt/ Al20s3.

Katovosi cn08a: KaTaliTUdHe OKHCHEHHsI; XJIOPOBaHi JIETKi OpraHiuHi CHOJYKH; AUXJI0POMETAH; TeTpaxJopoeTHU/IeH.
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AcmeT H. A3uzsoBa, 'yceitn M. ®apaxes

HHcmumym kamaausa u HeopeaHuyeckoll Xumuu umeHu akademuka M. Hazuesa HayuoHaabHoU akademuu HAYK
Azepb6atidxncana, Az1143, baky 143, np.I. [xcasuda, 113.

AHHOTanusa

Cpeau XMMHMYECKHUX BellleCcTB, BbIGpacbiBaeMbIX B aTMocdepy, JieTydre opraHudeckre coeanHenus (JIOC) Bo Bcem
Mupe KJjaaccuGUUUMPYWOTC KaK oONacHble 3arps3HUTENH Bo3jayxa. BaxhHoit rpynmoir JIOC saABaA0TCA
XJIOpOpraHUYecKHe cOoeJHHEeHHUs, KOTOphble IIHPOKO MCNOJIb3YIOTCS B NPOMBIIIJIEHHOCTH B TaKMX 006JacCTAX, KaK
NMPOU3BOJCTBO MOKWILUX U 06e3:KUPHBAIOLIUX CPeJCTB; B Ka4yeCcTBe IKCTPAreHTOoB; J06aBOK JJis KPAacOK, YePHUI U
KJleeB, KaK chipbe JJisl CHHTe3a JIeKapCTB, NeCTHIMA0B U NOJMMePOB; B KauecTBe pacTrBopuTeseil. Hainume sTux
coefUuHeHUIl B aTMocdepe NpeACTABAAIOT 3HAYUTEJbHYI0 ONACHOCTb JJs 340pPOBbsl 4eJiOBeKa H3-3a HX
BbIPa:>KEHHOH TOKCHUYHOCTH, BbICOKOIHl CTaGU/IBHOCTHM U CTONKOCTU B OKpy:Kawiueil cpejge. B gaHHoil paGore B
KayecTBe KaTa/Iu3aTOpOB OKHCJAeHusA auxjaopmeraHa (DCM) u mepxsopatuieHa (PCE) ucciesoBaHo B o6uieit
C/IOKHOCTH LIECTh Pa3/IMYHbIX META/VIOB, coAepKamux y-Al203. B kauecTBe aKTUBHBIX BelleCTB MCI0JIb30Baau Pt u
Pd nmo oraenbHocTH. Ilepea Ha4ya/ioM 3KCNEPUMEHTOB C HMCCIeJyeMbIMU KaTa/JU3aTOpaMH 6Gblj1a ONTUMHU3HPOBaHA

noaayva Boabl. Cpeau uccjie0BaHHbIX Hal6oJlee aKTHBEH B okucjaeHnu DCM 6b1i1 kaTaausaTop Pt/ Al203.

Karuesvle csn06a: KaTalATUYECKOE OKHCJIEHUE;

XJIOpUpOBaHHbIE JieTy4YHe OpraHu4ecKue COeJUuHEHU;

JIUXJIOPMETaH;

TETPaxyIoOp3THU/IEH.

Introduction

For many years, thermal incineration has been
considered one of the most efficient

decontamination processes. The effluent is
burned with air in a furnace or burner using fuel
gas as an energy source, as the low VOC
concentration (1000 ppm) prevents spontaneous
combustion. In addition, due to their chemical
stability, these compounds require high
temperatures (800-1000°C) for complete
destruction, and the presence of chlorine leadsto
the formation of a large volume of highly toxic
products of incomplete combustion, such as
phosgene, dibenzofuran, etc.

In recent decades, the catalytic oxidation of
Cl-VOCs has received increased attention for its
energy and efficiency benefits in a wide range of
operating conditions. Catalytic oxidation opens
up a different reaction path with the lower
activation energy than gas-phase combustion and
allows the oxidation to proceed at lower
temperatures. This results in lower energy
consumption and lower NOx production. The
approximate operating variable ranges are low to
moderate temperatures (100-500°C),
atmospheric pressure, high space velocity (103 -
105 h-1),and low organic contamination. Reagent
concentrationis 102-103 ppmin air.

The removal of CI-VOC by catalytic oxidation
over various catalysts has been presented in
many scientific papers. One of the main goals in
catalyst design is to find a composition that
lowers the temperature required to convert
contaminants. Also, the reaction path over the

catalyst should lead to complete oxidation of the
products, i.e., CO2, H20 and HCI. The presence of
HCI is preferred over Clz as it can be easily
purified after the catalytic oxidizer. The stability
and durability of the catalyst are just as
important as their activity and selectivity. These
properties must remain constant during the
reaction to comply with international
environmental regulations and to be more
economically attractive [1; 2].

The primarysources of chlorinated VOC
emissions into the atmosphere can be divided
into three groups: 1) chemical plants producing
halogenated hydrocarbons for the synthesis of
plastics, insecticides, anesthetics, etc.; 2) finishing
processes based on the use of volatile solvents; 3)
cleaning processes [3; 4]. Among thewide range
of Cl-VOCs, the compound group has been used
for catalytic oxidation studies: trichloroethylene
(TCE) and dichloromethane (DCM), common
cleaning solvents for dry cleaning, metal
degreasing and semiconductor manufacturing,
found in groundwater waste gases and soil
remediation processes. This work aims to
investigate the process of heterogeneous catalytic
oxidation of tetrachloroethylene (PCE) and
dichloromethane (DCM) on catalysts based on
noble metals. The catalyst must bring to the
oxidation products thatis, CO2, H,0 and HCL

Catalysts for the neutralization of chlorinated
VOCs. Historically, oxidation reactions have
always been carried out over noble metals or
transition metal oxides [5]. Noble metals are
commonly used for fulloxidation, while transition
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metal oxides are used for selective and
fulloxidation. The cost of treating streams
containing halogenated organics is estimated to
be double that of simple non-halogenated
organics. Catalytic emission reduction is a
particularly preferred approach when mixtures
of several compounds and low concentrations of
halogenated VOCs are present in the emissions
[6-9].

For a long time, catalysts based on noble
metals and mixed oxides have been intensively
studied. In recent years, efforts have been
focused on formulating catalysts with enhanced
redox properties.

Noble metals are the metals that are not
subject to corrosion and oxidation and do not
react with hydrochloric acid. The primary noble
metals are gold, silver, as well as platinum and
the other five platinum-group metals -
ruthenium, rhodium, palladium, osmium and
iridium.

Platinum-group metals (PGMs) are highly
active catalysts. Small amounts (0.1-0.5 %)
platinum and palladium dispersed on substrates
with a high specific surface area (y-Al203, TiOz,
Si02, etc.) are widely used for the oxidation of
these chlorinated hydrocarbons. Pt promotesthe
full oxidation of chlorohydrocarbons to COZ2,
whereas Pd yields CO to a greaterextentof
hydrogen chlorides [5]. Due to the excess of
oxygenin the reaction medium, noble metals are
gradually oxidized, and chlorinated oxides and
chloride metals are converted [10; 11].

The use of Pt and Pd is limited by the cost and
sensitivity of the catalysts. Noble metals,
especially platinum and palladium, show high
catalytic activity in many chemical reactions.
Platinum catalysts are widely used in oil refining
processes; palladium catalysts have found
application in the hydrogenation of unsaturated
organic compounds. Along with this, the metals of
the platinum group exhibit high catalyticactivity
in the reactions of deep oxidation of organic
substances and carbon monoxide, and in their
activity (per atom of the active substance), they
are significantly superior to other catalysts. Their
high cost hinders the widespread use of noble
metals as catalysts for deep oxidation; therefore,
supporting systems are often used. Most often the
oxides of aluminum,silicon and aluminosilicates
areused as carriers. However, such catalysts often
lose their activity in highly exothermicreactions
carried out at high temperatures. The probable
reasons for the deactivation of the deposited

systems at high temperatures are low thermal
stability of the samples, sintering, and
agglomeration of the metal particles on the base
surface[12;13].

The catalysts used for CVOC oxidation mustbe
highly active at relatively low temperatures,
maintain high resistance to deactivation with
chlorine and its compounds, and have high
selectivity towards COz and HCI. The reactivity of
CVOCs in catalytic oxidation, as well as the
distribution of of the products of reaction is
highly dependent on the catalyst used and the
chemical structure of the oxidized compounds.

Experience shows that noble metal catalysts
are often more selective than the catalystsbased
on metal oxides or perovskites [12; 13].

The total chlorine content of CVOC plays an
important role as chlorinated C; hydrocarbons
are catalytically more active than chlorinated C:
hydrocarbons and chlorobenzenes. Among
chlorinated hydrocarbons Ci, the reactivity
increases with an increase in the number of
chlorine atoms and a decrease in the number of
C-H bonds in the molecule - that is, the catalytic
reactivity of chlorinated hydrocarbons C;
increases with the reduction in the C-Cl bond
energy. In addition, the double bond affects the
reactivity, but, unlike VOCs, unsaturated CVOS
are more stable than saturated ones.

When mixtures of CVOC and VOC are oxidized,
each compounds breakdown efficiency can
increase or decrease. Generally, compared to
noble metal catalysts, the presenceofhydrogen-
rich compounds (e.g. water or VOCs)
positivelyaffectsthe selectivity to HCI, but the
CVOC conversion can also be increased. On the
other hand, CVDs usually inhibit the oxidation of
added non-chlorinated VOCs [14]. The enhanced
degradation of CVOC depends on the VOCs used.
For example unsaturated VOCs can significantly
increase the oxidation of unsaturated chlorinated
VOCs, while with the use of saturated VOCs the
effectis less.

Materials and methods

The characteristics of the compounds used in
the experiments are givenin table 1.

Dichloromethane. Exposure to
dichloromethane (DCM) is irritating to the skin
and eyes and can affect the central nervous
system, blood, liver, heart, and lungs. Exposure to
high concentrations can cause confusion and
evendeath [15-17].
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Table 1
Characteristics of the compounds used in the experiment

Compound formula Cas Ne CHS Density (g/mL) Boiling Emission Provider-

Classification (typical) Point limit Purity
(typical) value

Dichlormethane 75-09-2 H351 1.318 39.5 °C. 20 mg Nm3  Avantor-

DCM, CH2Cl2 (25 °Q) 5.27 ppm 99,5%
Terachloroethylene 127-18-4 H411,H351 1.63 g/cm? 121.1°C  20mg Nm3 Avantor-99%
PCE, C2Cl4 (20 °Q) (1013 hPa) 2.70 ppm

Tetrachlorethylene. Short-term exposure to
tetrachlorethylene (PCE) irritates the eyes, skin,
and respiratory tract and can affect the central
nervous system. Exposure to high concentrations
can cause unconsciousness. Long-term or
repeated exposure can cause dermatitis and
damage totheliver and kidney [18-20].

Catalysts used in the experiments. Two
different catalyst support (Al203, Al,03-Ti0Oz) and
two other active substances (Pt, Pd) were chosen
(Table 2). When preparing the Al;0s3-
TiOzcatalyst support a massratioof 3:1 was used.
The amount of support on the metal foil was set
constant and amounted to 25 % of the catalysts’
total mass. The noble metal loads were fixed the
same with moles (n), and therefore the target
loads were 1 wt% for Pt and 0.5 wt% for Pd. Used

precursor salts: Pd(NH3)4(NO3z), Pt(NHz)4+(HCO3)2.

After the subsequent impregnation of the active
material, the catalysts werecalcined at 550 °C for
5 hours. The catalysts withtheir actual metal
contentare presented in Table 2.

Table 2
Catalysts used in the experiments

Usedcatalysts ActualLoad
Pt/ Al203 0.98
Pd/ Al203 0.75
Pt/ Al203- TiO2 1,4
Pd/ Al203- TiO2 0.66
Al203 -
Al203- TiO2 -

The following methods determined

characteristics of the catalyst

Physical adsorption. Specific surface area
(SBET), specific pore volume (Vp), and pore size
distribution (PSD) wasdetermined by physical
nitrogen sorption at -196°C on a Thermo
Scientific Surfer gas adsorption porosimeter.
Samples were degassed before analysis for 2
hoursat350 °C in a vacuum (2 Pa).

Chemisorption. The degree of dispersion and
the surface area of the CO active sites of Pt, Pd,
determined by the iteration of active-site
chemisorption method at 35 °C using the Thermo
Scientific Surfer chemisorption module.

The formula for calculating the conversion. The
formula for calculating the conversion [%] is
presented as follows (1):

COUt

Xevoc =100><(1 ﬂ]

CCVOC

Gas analysis was carried out using an Agilent
7820A a gas  chromatography (Gas
Chromatograph) calibrated for the detection of
the following chlorinated hydrocarbons: C2Cls,
C2HCls, CH3Cl, CH2Clz, CHCl3, COCl2, HCI as well.
H20, CO2, CO, NO, NO2, N20, CH4, CH20, CH40,
C2Hs, C2H40, C2H60, C3Hs, C7Hs.

The chromatograph was equipped with a
high-temperature sample cell and a flame
ionization detector (FID) as well as a mass
spectrometric (MSD) detector. To analyze the
indicators, the OpenLAB CDS EZChrom Compact
software was used.

Vertically oriented reactor. In the laboratory,
activity experiments were carried out with a
vertically aligned tubular quartz reactor
operating at atmospheric pressure. The scheme
of the experimentisshownin Fig. 1.

(1)

gas chromatograph

—t—Tube furnace

L— Catalyst

—Temperature sensor

Preheating chamber

Water voC

T.II

Vapouriser

Air

Fig. 1. The experimental Vertically-aligned reactor

Due to the corrosion products, all materials
used in the experimental setup were corrosion-
resistant: quartz glass, heated Teflon pipes (T =
180 °C) and Teflon connectors. In an evaporation
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unit, liquid VOCs and water were supplied by
syringe pumps equipped with gastight syringes to
an evaporation heater and mixed with air from
the mass flow controller. A preheating oven filled
with glass spheres for mixing gases was set to
150 °C. The temperature was measured outside
thereactorjustin front of the monolith and then
adjusted to the value inside the reactor. The
correction was made based on a calibration
performed earlier by measuring the

temperatures inside and outside the reactor at
the same time as the furnace temperature was
increasing in the same way as during the ignition
tests. A monolith 0.8 cm in diameter and 4.0 cm
in length was used in all experiments. The CVOC
catalysts were packaged in a quartzglass tube.

Results and discussions

Properties of the tested catalysts are given in
table 3.

Table 3

Properties of the tested catalysts

Catalyst Metal dispersion Metal loading SBET (m2g1)
(%) (wt.%)
Pt/ Al203 50 0.98 142
Pd/ Al203 17 0.74 150
Pt/ Al203 -TiO2 50 1.2 131
Pd/ Al203 - TiO2 20 0.66 139
Al203 174 - -
Al203 - TiO2 137 - -

Dichloromethane oxidation. Ignition tests with
catalysts showed that the carriers themselves
(Al203, Al203-TiO2) were very active in DCM
oxidation, and up to 100 % DCM conversion was
achieved (Fig. 2). The substrates also showed
high selectivity towards HCI (Fig. 3) and CO:
formation. HCI yields were up to 99 %, and CO:
yieldsup to 100 %. The high activity of the tested
carriers, especially y-Al203, corresponds to the
results of other researchers, was expected since
several authors previously reportedit [5; 21-25].
The addition of Pt, Pd as the active compound had

a0 -

80 |-

Conversion (%)

20 |

0 L L
200 300 400 500 00 700

T (<C)

a different effect on the activity dependingon the
carrier (Fig. 2, a-b). In general, the resultwas
small, anyway. On the catalysts supported on
Al203, the impactwas positive for all of them
except for the Pd catalyst. The temperatures
required to achieve 100% DCM conversion were
420 °C for Pt/Al;03. When 26 wt% titanium
dioxide was present in the support, the addition
of active metal increased the catalysts’ activity.
For the Pt catalysts, temperatures of 420 °C and
450 °C were required to achieve 100 % DCM
conversion, respectively.

Corwversion (%)

T {°C)

Fig. 2. The DCM conversions over the Al203 (a), Al203-TiOz (b) (DCM 500 ppm, H20 1.5 wt%, GHSV [Gas hourly space
velocity] 32000 h-1) supported researched catalysts.
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Fig. 3. HCl yields over the Al203 (a), Al203- TiO2 (b) (DCM 500 ppm, H20 1.5 wt%, GHSV 32000 h-1) supported
researched catalysts in the dichloromethane oxidation.

Perchlorethylene oxidation. Before starting
the activity experiments, various concentrations
of water were tested (0.2 wt%, 0.6 wt%, 1 wt%,
1.5 wt%, 2 wt%) to determine the appropriate
amount of water to be added to the emission
stream during testing toactasahydrogen source
to ensure the highest possible HCl yield. In
addition to increasing the HCI selectivity from
57 % to 79 %, water also increased the PCE

100

80

o2}
o

Conversion (%)
IS
o

20

conversion to some extent, that is, from 77 % to
84 %, as the amount of waterincreased from 0.3
to 3 wt%. Of the various water concentrations
tested, 1.5 wt% was chosen for the activity
experiments, since the higher PCE conversion
and HCI yield increased only slightly, and the
same disadvantages as previously for DCM
manifested, i.e., unstable water evaporation and
interference

100 -
—=—Pd

—o—Pt

o —a— ALO,-TIO,

60

40

Conversion (%)

20

400
T(°C)
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0
300 400 500
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Fig. 4. The PCE conversions over the Al203 (a), Al203-TiO2 (b) (DCM 500 ppm, Hz0 1.5 wt%, HSV 32000 h-1) supporte
dresearched catalysts.
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Fig. 5. HCl yields over theAl203 (a), Al203- TiO2 (b) (DCM 500 ppm, H20 1.5 wt%, GHSV 32000 h-1) supported
researched catalysts in the perchlorethylene oxidation.
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The tested carriers, Alz03, Al.03-TiO2, showed
a rather high activity in PCE oxidation (Fig. 4).
The supports also showed high selectivity for HCI
(Fig.5), CO2,and CO- the only end products found
duringignition tests. In contrast tothe oxidation
of DCM Pt, Pd significantly increased the activity
and selectivity of the PCE oxidation. In addition,
almostall Al203-TiO2 supported catalystsshowed
higher activity, and better HCI selectivity than
their corresponding Al:03 supported catalysts.
The only exception to this rule was Pt/Al203-TiO>
because the activity and selectivity remained the
same as compared to the Pt / Al;03 catalyst.

Conclusions

In this study, six different CVOC metal
monolithic oxidation catalysts were studied in
vitro.

The catalysts used to destroy CVOC must be
highly active at relatively low temperatures, have
high selectivity towards CO2 and HCl, and retain
high resistance to deactivation by chlorine and its
compounds. Pt-Pd catalysts have been proven to
be highly active for CVOC oxidation. Pt catalysts
were more involved in DCM oxidation than Pd
catalysts. Pd catalysts were active in the
oxidation of PCE.

GHSVhad a marked effect on DCM conversion
and HCI yield, followed by DCM concentration
and then the amount of water in the feed stream.
The optimum water feed was setto 1.35 wt% for
both CVOCs. During testing, it was observed that
the addition of an active metal to the catalyst
significantlyincreases the selectivity towardsCO 2
and reduces the formation of detected by-
products. (CH3Cl, CH20, and CO). In DCM
oxidation, Pt/Al;,03 is the most active and
selective for HCl. The data presented in the article
have scientific novelty and practical significance.
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