

UDC 680.18:669.71:669.18

STRUCTURE AND CORROSION PROPERTIES OF QUASICRYSTALLINE Al-Ni-Co AND Al-Ni-Fe ALLOYS IN AQUEOUS ACIDIC SOLUTIONS

Vladimir A. Polonskyy, Olena V. Sukhova

Oles Honchar Dnipro National University, 72, Gagarin Ave., Dnipro 49010, Dnipro, Ukraine Received 7 June 2021; accepted 12 October 2021; available online 27 October 2021

Abstract

The structure and corrosion properties of as-cast quasicrystalline Al₇₂Fe₁₅Ni₁₃ and Al₇₂Co₁₈Ni₁₀ alloys in acidic media were studied in this work. The structure was investigated by the methods of quantitative metallography, X-ray analysis, scanning electron microscopy, and energy-dispersive X-ray spectrometry. Corrosion resistance was evaluated by gravimetric method in aqueous acidic solutions of HCl, H₂SO₄, HNO₃, and H₃PO₄ (pH=1.0). Both the investigated alloys were shown to form stable decagonal quasicrystalline D-phases. In the Al₇₂Co₁₈Ni₁₀ alloy, the D-phase is a primarily solidified phase but, in the Al₇₂Fe₁₅Ni₁₃ alloy, the D-phase is formed peritectically. Depending on the alloy composition, two types of decagonal quasicrystals were observed that belong in Al₇₂Fe₁₅Ni₁₃ and Al₇₂Co₁₈Ni₁₀ alloys, respectively, to Al₈₆Fe₁₄- and Al₇₃Co₂₇-based compounds alloyed with Ni. The Al₇₂Fe₁₅Ni₂₃ alloy exhibits the highest resistance to corrosion in the nitric acidic solution, but the Al₇₂Co₁₈Ni₁₀ alloy – in chloric, orthophosphoric, and sulphuric acidic solutions (in descending order). For both alloys, in the most solutions, relatively uniform dissolution of the alloys' surface is observed except for the more defective areas that dissolve at a higher rate.

Kew words: as-cast quasicrystalline alloys; decagonal quasicrystals; structure; acidic media; corrosion resistance.

СТРУКТУРА ТА КОРОЗІЙНІ ВЛАСТИВОСТІ КВАЗІКРИСТАЛІЧНИХ СПЛАВІВ Al-Ni-Co TA Al-Ni-Fe У ВОДНИХ РОЗЧИНАХ КИСЛОТ

Володимир А. Полонський, Олена В. Сухова

Дніпровський національний університет імені Олеся Гончара, пр. Гагаріна, 72, Дніпро, 49010, Україна

Анотація

У роботі вивчали структуру та корозійні властивості литих квазікристалічних сплавів $Al_{72}Fe_{15}Ni_{13}$ та $Al_{72}Co_{18}Ni_{10}$ у кислих середовищах. Структуру зразків досліджували методами кількісної металографії, рентгеноструктурного аналізу, растрової електронної мікроскопії та рентгеноспектрального мікроаналізу. Корозійну тривкість вивчали гравіметричним методом у водних розчинах кислот HCl, H_2SO_4 , HNO₃ та H_3PO_4 (pH=1.0). Показано, що в обох досліджених сплавах утворюються стабільні декагональні квазікристалічні D-фази. У сплаві $Al_{72}Co_{18}Ni_{10}$ D-фаза кристалізується з розплаву першою, а в сплаві $Al_{72}Fe_{15}Ni_{13}$ D-фаза виділяється за перитектичною реакцією. Залежно від складу сплавів спостерігаються два типи декагональних квазікристалів, які утворюються на основі легованих Ni хімічних сполук $Al_{86}Fe_{14}$ в сплаві $Al_{72}Fe_{15}Ni_{13}$ і $Al_{73}Co_{27}$ в сплаві $Al_{72}Co_{18}Ni_{10}$. Найбільшу корозійну тривкість у розчині нітратної кислоти має сплав $Al_{72}Fe_{15}Ni_{13}$, а у розчинах хлоридної, ортофосфатної та сульфатної кислот (у порядку зменшення) – сплав $Al_{72}Co_{18}Ni_{10}$. У більшості розчині відбувається відносно рівномірне розчинення поверхні зразків за виключенням ділянок з більш дефектною структурою, які розчиняються з більшою швидкістю.

Ключові слова: квазікристалічні сплави; декагональні квазікристали; структура; кислі середовища; корозійна тривкість.

*Corresponding author: e-mail address: polva57@gmail.com © 2021 Oles Honchar Dnipro National University doi: 10.15421/jchemtech.v29i3.233588

СТРУКТУРА И КОРРОЗИОННЫЕ СВОЙСТВА КВАЗИКРИСТАЛЛИЧЕСКИХ СПЛАВОВ Al-Ni-Co и Al-Ni-Fe в водных растворах кислот

Владимир А. Полонский, Елена В. Суховая

Днипровский национальный университет имени Олеся Гончара, пр. Гагарина, 72, Днепр, 49010, Украина

Аннотация

В работе изучали структуру и коррозионные свойства литых квазикристаллических сплавов Al₇₂Fe₁₅Ni₁₃ и Al₇₂Co₁₈Ni₁₀ в кислых средах. Структуру образцов исследовали методами количественной металлографии, рентгеноструктурного анализа, растровой электронной микроскопии и рентгеноспектрального микроанализа. Коррозионную стойкость изучали гравиметрическим методом в водных растворах кислот HCl, H₂SO₄, HNO₃ и H₃PO₄ (pH=1.0). Показано, что в обоих исследованных сплавах образуются стабильные декагональные квазикристаллические D-фазы. В сплаве Al₇₂Co₁₈Ni₁₀ D-фаза кристаллизируется из расплава первой, а в сплаве Al₇₂Fe₁₅Ni₁₃ D-фаза выделяется в ходе перитектической реакции. В зависимости от состава сплавов наблюдаются два типа декагональных квазикристаллов, которые образуются на основе легированных Ni химических соединений Al₈₆Fe₁₄ в сплаве Al₇₂Fe₁₅Ni₁₃ и Al₇₃Co₂₇ в сплаве Al₇₂Co₁₈Ni₁₀. Наибольшую коррозионную стойкость в растворе азотной кислоты имеет сплав Al₇₂Fe₁₅Ni₁₃, a в растворах соляной, ортофосфатной и серной кислот (в порядке убывания) – сплав Al₇₂Co₁₈Ni₁₀. В большинстве растворов происходит относительно равномерное растворение поверхности образцов за исключением участков с более дефектной структурой, которые растворение скоростью.

Ключевые слова: квазикристаллические сплавы; декагональные квазикристаллы; структура; кислые среды; коррозионная стойкость.

Введение

Квазикристаллические сплавы на основе алюминия считаются одними из наиболее перспективных современных материалов, применение которых позволяет создавать изделия с уникальным сочетанием свойств [1–3]. Благодаря образованию в их структуре квазикристаллических фаз достигаются высокие антикоррозионные и антифрикционные свойства, стойкость в окислительной, абразивной И газоабразивной средах [4-9]. Однако, имея высокую твердость, квазикристаллы характеризуются повышенной хрупкостью, что значительно снижает их эксплуатационный ресурс [3; 4]. Поэтому на практике квазикристаллические сплавы используют качестве наполнителей в композиционных материалов, наносят в виде покрытий методами электрохимического осаждения, ионноплазменного напыления, осаждения из газовой фазы и др. [10-19].

квазикристаллических Использование сплавов-наполнителей в составе композиционных материалов позволяет избежать хрупкого разрушения квазикристаллов благодаря наличию пластичной металлической матрицы. Развитие трещин останавливается на границах раздела между наполнителем и матрицей, не приводя к разрушению материала [20-22].Для создания композиционных материалов особый интерес представляют сплавы Al-Ni-Co [23-26] и Al-[27-29], в структуре Ni–Fe которых декагональная квазикристаллическая фаза (D-фаза) образуется при обычных скоростях

охлаждения. Эта фаза относится к двумерным квазикристаллам, для которых характерен периодический порядок в расположении атомов вдоль оси симметрии 10-го порядка и апериодический порядок В плоскости, перпендикулярной этой оси [30-33]. Важным преимуществом декагональных квазикристаллов является их стабильность вплоть до температуры 1300 К, что позволяет пропитку выполнять композиционных металлическими материалов сплавамисвязками на основе меди и алюминия [34; 35].

Одним из требований к композиционных материалам. используемым для зашиты поверхности деталей авиационной и ракетнокосмической техники, является их высокая коррозионная стойкость в кислых средах. Однако в литературе найдены лишь ограниченные сведения 0 поведении квазикристаллических сплавов Al-Ni-Co и Al-Ni-Fe в растворах кислот [36; 37].

Поэтому в работе исследовали структуру и коррозионную стойкость квазикристаллических сплавов Al₇₂Fe₁₅Ni₁₃ и Al₆₉Co₂₁Ni₁₀ с целью разработки состава сплава-наполнителя композиционных материалов, предназначенных для работы в кислых средах.

Материалы и методика эксперимента

Сплавы $Al_{72}Fe_{15}Ni_{13}$ и $Al_{69}Co_{21}Ni_{10}$ получали сплавлением химически чистых компонентов (99.99%) в графитовых тиглях в печи Таммана. Содержание химических элементов определяли методом рентгенофлюоресцентного анализа на

СЕФ-01-М установке «Спрут». Скорость охлаждения сплавов составляла 5 K/c. Микроструктуру сплавов изучали с помощью оптического микроскопа «Neophot» (ОМ) и структурного анализатора «Epiquant». Идентификацию фаз проводили методом рентгеноструктурного анализа на аппарате ДРОН-УМ с использованием излучения Cu-K_a. Исследования методом рентгеноспектрального микроанализа выполняли на сканирующем электронном JSM-6490LV микроскопе (СЭМ), оборудованном энергодисперсионным спектрометром.

Коррозионные свойства сплавов 20 ± 2 °C исследовали температуре при гравиметрическим методом в течение 1-4 часов в водных растворах кислот HCl, H₂SO₄, HNO₃ и H₃PO₄. Для сравнения коррозионной стойкости использовали кислоты С одинаковым значением водородного (pH = 1.0).Водородный показателя показатель кислых сред контролировали с помощью иономера ЭВ-74. Образцы после погружения в исследованные растворы взвешивали на аналитических весах WA-21 с точностью до 0.1 мг. Поверхность сплавов после пребывания в кислотах исследовали с помощью растрового электронного микроскопа PEM-06И.

Результаты эксперимента и их обсуждение

При затвердевании сплава Al₇₂Fe₁₅Ni₁₃ первой из жидкости выделяется фаза Al₅FeNi (рис. 1). Решетка этой фазы изоструктурна гексагональной решетке фазы Al₅Co₂ (hP28) кристаллизуется [27–29]. Затем квазикристаллическая декагональная D-фаза, результатам имеющая согласно рентгеноспектрального микроанализа стехиометрический Al_{71.5}Fe₁₅Ni_{13.5}. состав Объемная доля этой фазы составляет около 24 % объема сплава (табл. 1). Учитывая принадлежность D-фазы к фазам Юм-Розери, расчет отношения количества валентных электронов (е) к количеству атомов (а) дает значение е/а=1.84 (табл. 1).

Table 1

Таблица 1

The properties of quasicrystalline Al₇₂Fe₁₅Ni₁₃ and Al₇₂Co₁₈Ni₁₀ alloys.

Свойства квазик	ристаллических	сплавов АІ72	Fe15Ni13 и А	Al72C018Ni10
obolici bu nbushin	pherusisin icenna	chi/lubob mi/li	CIDINITO HIL	11/2001011110

Alloy	Phases	Volume fraction, %	Microhardness, GPa	e/a
Al ₇₂ Fe ₁₅ Ni ₁₃	D-фаза	23.8±0.1	8.6±1.0	1.84
	Al ₅ FeNi	76.2±0.1	4.8±0.4	1.86
Al72Co18Ni10	D-фаза	59.2±1.2	8.68±0.44	2.02
	Al9(Co,Ni)2	40.8±0.5	4.17±0.35	1.99

Fig.1. As-cast quasicrystalline Al₇₂Fe₁₅Ni₁₃ alloy: a – OM-image; b – X-ray pattern Рис.1. Литой квазикристаллический сплав Al₇₂Fe₁₅Ni₁₃: а – ОМ-фото; b – рентгенограмма

Сплав $Al_{72}Co_{18}Ni_{10}$ двухфазную имеет структуру (рис. 2). Около 60 % от его объема кристаллы первичной занимают D-фазы 50-80 размерами мкм. По данным рентгеноспектрального микроанализа эта

фаза имеет стехиометрический состав $Al_{69}Co_{21}Ni_{10}$. Кристаллы D-фазы окаймлены ободками кристаллической фазы $Al_9(Co,Ni)_2$. Она образуется по перитектической реакции $\mathcal{W}+D\rightarrow Al_9(Co,Ni)_2$ [23–26]. Ввиду различной

степени завершенности перитектической реакции состав фазы Al₉(Co,Ni)₂ находится в пределах (по массе): 54.18–63.95 % Al; 11.22–

30.66 % Ni; 15.16–24.83 % Со. Отношение е/а для D-фазы в сплаве Al₇₂Co₁₈Ni₁₀ увеличивается до значения е/а=2.02 (табл. 1).

Fig.2. As-cast quasicrystalline Al₇₂Co₁₈Ni₁₀ alloy: a – SEM-image; b – X-ray pattern Рис.2. Литой квазикристаллический сплав Al₇₂Co₁₈Ni₁₀: а – СЭМ-фото; b – рентгенограмма

Полученные результаты свидетельствуют что в исследованных сплавах 0 ТОМ, наблюдаются два типа декагональных квазикристаллов. В сплаве Al₇₂Co₁₈Ni₁₀ они образуются на основе соединения Al₇₃Co₂₇ и соответствуют типу D-AlCo, а в сплаве Al₇₂Fe₁₅Ni₁₃ – на основе соединения Al₈₆Fe₁₄ и принадлежат к типу D-AlFe. Декагональные Dквазикристаллы в сплавах Al₇₂Fe₁₅Ni₁₃ и Al₇₂Co₁₈Ni₁₀ характеризуются повышенной микротвердостью, значительно превышающей характеристику эту для кристаллических фаз (табл. 1). Увеличение микротвердости сопровождается ростом хрупкости квазикристаллов.

Проведенные коррозионные испытания показали, что образцы обоих сплавов под действием кислот изменяют свой внешний вид. Это проявляется в виде потемнения поверхности И появления цветов побежалости. Указанные эффекты сильнее всего выражены для образцов, помещенных в растворы серной и особенно ортофосфатной кислот. B этих растворах происходит активное газовыделение, вызванное травлением компонентов сплавов. Такие же эффекты намного меньшей В степени наблюдаются в растворах азотной и соляной кислот.

Результаты гравиметрических измерений показали, что в растворах соляной и азотной

кислот для образцов сплава $Al_{72}Co_{18}Ni_{10}$ прирост наблюдается массы, а сплава Al₇₂Fe₁₅Ni₁₃ – убыль массы (рис. 3*a*, 3*b*). Это означает, что для сплава Al₇₂Co₁₈Ni₁₀ скорость селективного растворения компонентов меньше, чем скорость накопления продуктов коррозии на поверхности, а для сплава Al₇₂Fe₁₅Ni₁₃ – наоборот. Причем для сплава Al₇₂Co₁₈Ni₁₀ наибольший прирост массы в растворе соляной кислоты наблюдается после 3-х часов испытаний, а в растворе азотной кислоты – после 1-го часа. Для сплава Al₇₂Fe₁₅Ni₁₃ потеря массы образцов после 3-х часов испытаний практически не изменяется. Этот сплав характеризуется большей коррозионной стойкостью в растворе азотной кислоты, тогда как сплав Al₇₂Co₁₈Ni₁₀ – в растворе соляной кислоты.

В растворах серной и ортофосфорной кислот для образцов обоих сплавов характерна убыль массы (рис. 3*с*, 3*d*), что свидетельствует 0 преимущественном растворении компонентов сплавов в ходе испытаний. Наибольшая потеря массы образцов в этих кислотах наблюдается после 3-го часа испытаний, далее она стабилизируется. Сплав Al₇₂Co₁₈Ni₁₀ имеет более высокую коррозионную стойкость, особенно в растворе ортофосфорной кислоты, по сравнению со сплавом Al₇₂Fe₁₅Ni₁₃.

Fig.3. Mass change per unit area vs. corrosion time for the Al₇₂Fe₁₅Ni₁₃ (curve 1) and the Al₇₂Co₁₈Ni₁₀ (curve 2) alloys in acidic solutions (pH=1.0): a – HCl; b – HNO₃; c – H₂SO₄; d – H₃PO₄ Рис.3. Зависимости изменения удельной массы образцов сплавов Al₇₂Fe₁₅Ni₁₃ (кривая 1) и Al₇₂Co₁₈Ni₁₀ (кривая 2) от времени выдержки в растворах кислот (pH=1.0): a – HCl; b – HNO₃; c –H₂SO₄; d – H₃PO₄

В порядке возрастания удельного изменения массы образцов сплава Al₇₂Co₁₈Ni₁₀ растворы кислот можно расположить в следующем порядке: $HCl \rightarrow H_3PO_4 \rightarrow HNO_3 \rightarrow$ H₂SO₄. Для образцов сплава Al₇₂Fe₁₅Ni₁₃ этот выглядит таким образом: ряд $HNO_3 \rightarrow HCl \rightarrow H_2SO_4 \rightarrow H_3PO_4.$ Сравнение результатов определения удельного изменения массы образцов, приведенных на рис. 3, указывает на то, что в большинстве исследованных кислых сред сплав Al₇₂Co₁₈Ni₁₀ характеризуется более высоким сопротивлением коррозии.

Сделанные подтверждают выводы результаты исследований методом микроскопии сканирующей электронной поверхностей сплавов, прошедших коррозионные испытания в растворе серной Установлено, кислоты. что поверхность образцов сплава Al₇₂Fe₁₅Ni₁₃ относительно равномерно растворяется в растворе этой кислоты (рис. 4). При увеличении изображения выявляются явные признаки химического травления преимущественно границ кристаллической фазы Al₅FeNi. Кроме того, встречаются участки питтингтравления.

На образцов поверхности сплава Al₇₂Co₁₈Ni₁₀ после 4 часов выдержки в растворе наиболее агрессивной серной кислоты отсутствуют явные признаки разрушения или растворения компонентов сплава (рис. 5). Коррозия протекает путем относительно равномерного травления поверхности. Причем преимущественно межфазные травятся границы раздела кристаллической фазы Al₉(Ni,Co)₂, которые, как известно, имеют более дефектную структуру.

а Fig.4. SEM-images of surface of the Al₇₂Fe₁₅Ni₁₃ alloy after 4 holding hours in sulphuric acidic solution (pH=1.0) Рис.4. СЭМ-фото поверхности образца сплава Al₇₂Fe₁₅Ni₁₃ после 4 часов выдержки в растворе серной кислоты (pH=1.0)

Fig.5. SEM-images of surface of the Al₇₂Co₁₈Ni₁₀ alloy after 4 holding hours in sulphuric acidic solution (pH=1.0) Рис.5. СЭМ-фото поверхности образца сплава Al₇₂Co₁₈Ni₁₀ после 4 часов выдержки в растворе серной кислоты (pH=1.0)

Выводы

квазикристаллические Исследованные сплавы Al₇₂Fe₁₅Ni₁₃ и Al₆₉Co₂₁Ni₁₀ имеют двухфазную структуру, в которой наблюдаются квазикристаллы декагональной D-фазы и кристаллические фазы Al₅FeNi и Al₉(Co,Ni)₂ соответственно. D-фаза в сплаве Al₇₂Fe₁₅Ni₁₃ образуется на основе химического соединения Al₈₆Fe₁₄, а в сплаве Al₆₉Co₂₁Ni₁₀ -Al₇₃Co₂₇. соединения Микротвердость квазикристаллической фазы как в сплаве Al₇₂Co₁₈Ni₁₀, так и в сплаве Al₇₂Fe₁₅Ni₁₃, в 1.8-2.1 раза превышает микротвердость кристаллических фаз.

В результате проведенных модельных коррозионных испытаний выявлено, что в растворах кислот коррозия сплавов проходит по типу травления, причем в первую очередь разрушаются границы раздела кристаллических фаз. В зависимости от

коррозионная природы аниона кислоты стойкость сплавов различается. Сплав Al₇₂Fe₁₅Ni₁₃ более устойчив в растворе азотной кислоты, а сплав Al₇₂Fe₁₅Ni₁₃ – в растворах соляной, серной и ортофосфатной кислот. Исследованные сплавы являются перспективными материалами лля наполнителей коррозионностойких композиционных материалов, предназначенных для защиты поверхности деталей авиационной и ракетно-космической техники, подверженных влиянию кислых сред.

References

- Stadnik, Z. M. (1999). Physical Properties of Quasicrystals. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-58434-3.
- [2] Sukhova, O. V., Ustinova, K. V. (2019). The Effect of Cooling Rate on Phase Composition of Quasicrystalline Al-Cu-Fe Alloys Doped with Si and B. *Funct. Mater.*, 26(3), 495–506.

https://doi.org/10.15407/fm26.03.495.

- Huttunen-Saarivirta, E. (2004). Microstructure, Fabrication and Properties of Quasicrystalline Al-Cu-Fe Alloys: A Review. J. Alloys Compd., 363(1-2), 150-174. <u>https://doi.org/10.1016/S0925-8388(03)00445-</u> 6.
- [4] Trebin, H. R. (2003). *Quasicrystals: Structure and Physical Properties*. Weinheim: Wiley-VCH Verlag GmbH & Co. <u>https://doi.org/10.1002/3527606572</u>.
- [5] Sukhova, O. V., Polonskyy, V. A., Ustinova, K. V. (2018). Microstructure and Corrosion Properties of Quasicrystal Al-Cu-Fe Alloys Alloyed with Si and B in Acidic Solutions. *Voprosy Khimii i Khimicheskoi Tekhnologii*, 121(6), 77–83. <u>https://doi.org/10.32434/0321-4095-2018-121-6-77-83.</u>
- [6] Sukhova, O. V., Polonskyy, V. A., Ustinova, K. V. (2018). Influence of Si and B on Structure and Corrosion Properties of Quasi-Crystalline Al-Cu-Fe Alloys in Solutions of Salts. *Metallofiz. Noveishie Tekhnol.*, 40(11), 1475-1487. https://doi.org/10.15.407/wfsrt.40.11.1475

https://doi.org/10.15407/mfint.40.11.1475.

- [7] Sukhova, O. V., Polons'kyi, V. A., Ustinova, K. V. (2019). Corrosion Resistance of Alloys of the Al-Cu-Fe-(Si, B) System in Mineralized Saline and Acid Solutions. *Mater. Sci.*, 55(2), 285-292. <u>https://doi.org/10.1007/s11003-019-00302-2</u>.
- [8] Rampulla, D. M., Mancinelli, C. M., Brunell, I. F., Gellman, A. J. (2005). Oxidative and Tribological Properties of Amorphous and Quasicrystalline Approximant Al-Cu-Fe Thin Films. *Langmuir*, 21(10), 4547–4553. <u>https://doi.org/10.1021/la0469093.</u>
- [9] Guedes de Lima, B. A., Gomes, R. G., Guedes de Lima, S. J., Dragoe, D., Barthes-Labrousse, M. G., Kouitat-Njiwa, R., Dubois, J. M. (2016). Self-Lubricating, Low-Friction Wear-Resistant Al-Based Quasicrystalline Coatings. *Sci. Technol. Adv. Mater.*, 17(1), 71–79. https://doi.org/10.1080/14686996.2016.1152563.
- [10] Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2021) Recent Developments on Fabrication of Al-Matrix Composites Reinforced with Quasicrystals: From Metastable to Conventional Processing. *J. Mater. Res.*, 36, 281–297. <u>https://doi.org/10.1557/s43578-020-00083-4.</u>
- [11] Jithesh, K., Prabhu, T. R., Anant, R. V., Arivarasu, M., Srinivasan, A., Mishra, R. K., Arivazhagan, N. (2019). An Overview of Quasicrystal Reinforced Magnesium Metal Matrix Composites. *Mater. Sci. Forum.*, 969, 218–224. <u>https://doi.org/10.4028/www.scientific.</u> <u>net/MSF.969.218.</u>
- [12] Sukhova, O. V., Syrovatko, Yu. V. (2011). Features of Structurization of Composite Materials of the Solutionand-Diffusion Type. *Metallofiz. Noveishie Tekhnol.*, 33(Special Issue), 371–378.
- Kamalnath, M., Mohan, B., Singh, A., Thirumavalavan, K. (2020). Development of Al1070 Quasicrystal (Al₆₅Cu₂₃Fe₁₂) Composites Using Friction Stir Processing and Its Mechanical Characterization. *Mater. Res. Express*, 7(2), 1–11. <u>https://doi.org/10.1088/2053-1591/ab71c5</u>.
- [14] Ryabtsev, S. I., Polonskyy, V. A., Sukhova, O. V. (2020) Effect of Scandium on the Structure and Corrosion Properties of Vapor-Deposited Nanostructured Quasicrystalline Al-Cu-Fe Films. *Powder Metall. Met. Ceram*, 58(9–10), 567–575. https://doi.org/10.1007/s11106-020-00111-2.
- [15] Spyrydonova, I. M., Sukhova, O. V., Zinkovskij, G. V. (2012). Thin films and composites based on

quasicrystal Al-Cu-Fe alloy. *Metallurgical and Mining Industry*, 4(4), 2–5.

- [16] Posuvailo, V. M., Kulyk, V. V., Duriagina, Z. A., Koval'chuck, I. V., Student, M. M., Vasyliv, B. D. (2020) The Effect of Electrolyte Composition on the Plasma Electrolyte Oxidation and Phase Composition of Oxide Ceramic Coatings Formed on 2024 Aluminium Alloy. *Arch. Mater. Sci. Eng.*, 105(2), 49– 55. https://doi.org/10.5604/01.3001.0014.5761.
- [17] Kovbasiuk, T. M., Selivorstov, V. Yu., Dotsenko, Yu. V., Duriagina, Z. A., Kulyk, V. V., Kasai, O. M., Voitovych, V. V. (2020) The Effect of the Modification by Ultrafine Silicon Carbide Powder on the Structure and Properties of the Al-Si Alloy. *Arch. Mater. Sci. Eng.*, *101*(2), 57–62. <u>https://doi.org/10.5604/01.3001.0014.1191.</u>
- [18] Vasyliv, B., Kulyk, V., Duriagina, Z., Mierzwinski, D., Kovbasiuk, T., Tepla, T. (2020) Estimation of the Effect of Redox Treatment on Microstructure and Tendency to Brittle Fracture of Anode Materials of YSZ-NiO(Ni) System. *Eastern-European J. Enterp. Technol.*, 108(6), 67–77. <u>https://doi.org/10.15587/1729-4061.2020.218291.</u>
- [19] Mora, J., Garcia, P., Muelas, R., Aguero, A. (2020) Hard Quasicrystalline Coatings Deposited by HVOF Thermal Spray to Reduce Ice Accretion in Aero-Structures Components. *Coatings*, 10(3), 290–297. <u>https://doi.org/10.3390/coatings10030290.</u>
- [20] Spiridonova, I. M., Sukhova, O. V., Vashchenko, A. P. (1999) Multicomponent Diffusion Processes in Boride-Containing Composite Materials. *Metallofiz. Noveishie Tekhnol.*, 21(2), 122–125.
- [21] Sukhova, O. V. (2020) The Effect of Carbon Content and Cooling Rate on the Structure of Boron-Rich Fe-B-C Alloys. *Phys. Chem. Solid St.*, *21*(2), 355-360. <u>https://doi.org/10.15330/pcss.21.2.355-360.</u>
- [22] Spiridonova, I. M., Sukhovaya, E. V., Balakin, V. P. (1996) Structure and Deformation Peculiarities of Fe(B,C) Crystals. *Metallurgia*, 35(2), 65–68.
- [23] Zou, Y., Wheeler, J. M., Sologubenko, A. S., Michler, J., Streurer, W., Spolenak, R. (2016) Bridging Room-Temperature and High-Temperature Plasticity in Decagonal Al–Ni–Co Quasicrystal by Microthermomechanical Testing. *Phil. Mag.*, 96(32–34), 3356–3378.

https://doi.org/10.1080/14786435.2016.1234722.

- [24] Jamshidi, L. C., Bodbari, R. J. (2018). Evolution of the Phases of Quasicrystalline Alloys Icosahedral/Decagonal Al_{62.2}Cu_{25.3}Fe_{12.5}/Al₆₅Ni₁₅Co₂₀ and Oxidative Behavior. J. Chilean Chem. Soc., 63(2), 3928–3933. <u>https://doi.org/10.4067/s0717-97072018000203928.</u>
- [25] Hiraga, K., Ohsuna, T., Sun, W., Sugiyama, K. (2002). The Structural Characteristics of Al–Co–Ni Decagonal Quasicrystals and Crystalline Approximants. J. Alloys Compd., 342(1–2), 110–114.

https://doi.org/10.1016/S0925-8388(02)00153-6. [26] Singh, V. K., Barman, S. R. (2020.) Study of Single Grain

- [20] Shigh, V. K., Barman, S. R. (2020.) Study of Shigh Gram Decagonal Al-Ni-Co Quasicrystal Surface. AIP Conf. Proc., 2265, 1–7. <u>https://doi.org/10.1063/5.0016759.</u>
- [27] Nejadsattari, F., Stadnik, Z. M., Przewoznik, J., Grushko, B. (2016) Messbauer Spectroscopy, Magnetic and Ab-Initio Study of the Approximant Al₇₆Ni₉Fe₁₅ to a Decagonal Al-Ni-Fe Quasicrystal. *J. Alloys Compd.*, 662(1-2), 612-620. <u>https://doi.org/10.1016/ i.jallcom.2015.12.115.</u>
- [28] Setyawan, A. D., Louzguine, D. V., Sasamori, K., Kimura, H. M., Ranganathan, S., Inoue, A. (2005). Phase

Composition and Transformation Behavior of Rapidly Solidified Al–Ni–Fe Alloys in α -Al-Decagonal Phase Region. *J. Alloys Compd.*, 399(1–2), 132–138. https://doi.org/10.1016/j.jallcom.2005.03.20.

- [29] Hiraga, K., Park, K. T. (1996). High Resolution Electron Microscopy of Al-Ni-Fe Decagonal Quasicrystal. J. Mater. Res., 11(7), 1702–1705. https://doi.org/10.1557/JMR.1996.0213.
- [30] Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2020). Designing New Quasicrystalline Compositions in Al-Based Alloys. J. Alloys Compd. 823(1-2), 1-6. https://doi.org/10.1016/j.jallcom.2020.
- [31] Bindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M. P., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhard, W. M., Yudovskaya, M. P., Steinhard, L. (2015). Natural Quasicrystal with Decagonal Symmetry. *Sci. Rep.*, *5*, 1–5. <u>https://doi.org/10.1038/srep09111</u>.
- [32] Zou, Y., Kuczera, P., Wolny, J. (2016). Fitting the Long-Range Order of a Decagonal Quasicrystal. *Acta Phys. Pol. A*, 130(4), 845–847.
 https://doi.org/10.12602/cphyspale.120.845

https://doi.org/10.12693/aphyspola.130.845.

[33] Luca, B., Pham, J., Steinhardt, P. J. (2018). Previously Unknown Quasicrystal Periodic Approximant Found in Space. Sci. Rep., 8, 1–8. https://doi.org/10.1038/s41598-018-34375-x.

- [34] Sukhova, O. V., Syrovatko, Yu. V. (2019). New Metallic Materials and Synthetic Metals. *Metallofiz. Noveishie Tekhnol.*, 41(9), 1171–1185. <u>https://doi.org/10.15407/mfint.41.09.1171.</u>
- [35] Zhu, M., Yang, G., Yao, L., Cheng, S., Zhou, Y. (2010). Microstructure and Mechanical Properties of Al-Base Composites by Addition of Al–Ni–Co Decagonal Quasicrystalline Particles Through a Mechanical Stirring Route. J. Mater. Sci., 45(14), 3727–3734. https://doi.org/10.1007/s10853-010-4421-8.
- [36] Babilas, R., Mlynarek, K., Lonski, W., Lis, M., Lukowiec, D., Kadziolka-Gawel, M., Warski, T., Radon, A. (2021). Analysis of Thermodynamic Parameters for Designing Quasicrystalline Al-Ni-Fe Alloys with Enhanced Corrosion Resistance. J. Alloys Compd., 868(1-2), 1-9. https://doi.org/10.1016/j.jallcom.2021.159241.
- [37] Sukhova, O. V., Polonskyy, V. A., Ustinova, K. V. (2017). Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys. *Phys. Chem. Solid St.*, 18(2), 222–227.

https://doi.org/10.15330/PCSS.18.2.222-227.