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Abstract

In this article we observed the modeling the movement of viscous-plastic material, compressed with indicators that
depend on the pressure in the channels of complex geometry of technological equipment. As the material we chose
the Bingham fluids with two constant parameters - viscosity and pressure threshold. We consider the flow in the
flat channel. The motion of the boundaries is assumed to be purely longitudinal, and the flow field is not
longitudinal. The transverse component of the velocity appears due to the dependence of the parameters of the
rheological model on pressure. Flow simulation was carried out in two stages. At the first stage, we considered the
rheological model of the flow of Bingham material, but without compression. In the second stage, we studied the
influence of barotropic compression factor. The superposition method was used when considering the flow model.
According to the results of the simulation, we obtained a flow model of nonclassical Bingham material, which can be
extended to materials that are compressed and satisfy the conditions of barotropicity. Within the framework of the
proposed model, we obtained the equations of zero and the second approximation to determine the characteristics
of the Bingham flow in a flat channel. The obtained formulas allow to determine the velocity of the quasi-solid core,
which is determined by the degree of deviation of the viscosity and shear threshold, and the average value of the
inverse viscosity at the same pressure range. It is established that for long channels in the zero approximation the
compressibility does not have a significant effect on the flow, but has an effect only in the second approximation,
while the average pressure gradient remains a finite value, ie the pressure difference at the channel ends becomes
infinite. For barotropic compressible material, this means that if the pressure at one end of the channel becomes
infinite, the density of the material at this end must also become infinite. Thus, when the value of pressure tends to
infinity, the value of density remains a finite value. Mathematical description of the flow of viscous-plastic
baratropic fluid in the channels of complex geometry of technological equipment allows to establish the
dependence of viscosity and limit value of shear stress on pressure with the maximum generalization of
parameters.
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AHoTalif

Po3r/IIHyTO 0COGJIMBOCTI MOJE/IIOBAaHHA PYyXy B'S3KO-IJIACTUYHOrO MaTepiasy, 0 CTUCKAETHCA 3 MOKa3HUKAMHU,
3ajIe)KHMMHU BiJi TUCKy B KaHajJaX CKJIaJHOI reomerpii TexHo/iOriyHoro o6JaaHaHHA. Ik Matepiaa o6paHO
6IHraMoOBCBbKi pifUHU 3 ABOMA NOCTiHHMMM NapaMeTpaMH - B’A3KICTI0O Ta MOPOroM 3pylleHHs, AKi 3ajieXkaThb Bij
THUCKY. Po3risjgaerbca Teuisd B mIacKkoMy KaHaji. Pyx rpaHunb nepea6adya€eTrbcs YUCTO MO3J0BXKHIM, a nmoJje Teyii
NpU bOMY € monepe4yHuM. Moael0BaHHA Tedii 3JilicHIOBa/sioch B ABa eTan. Ha nmepmomy erani po3risigaerbcs
peoJsioriyuHa Mojesib Teuyii GiHramiBcbKOro marepiajay, aje 6e3 crtuckaHHd. Ha apyromy erami nmpoBoAWI0Ch
BHBYEHHs BIUVIUBY (QakKkTopa 6apoTpOmHOro CcTuckaHHA. IIpu po3rifaai moaeni Teuii BUKOPUCTAaHO METOJ,
cynepnosuiii. Y pamMkKax 3anponoOHOBaHOI MoJeJli OTpUMaHi PiBHAHHS HYJIbOBOTO Ta APYroro HaG/IMKeHHA s
BH3HAaYeHHs XapaKTepUCTUK OiHraMiBcbkoi Tedii B IUIacKOMy KaHajdi. CTHCKa€eMicThb B'A3KO-IJIACTUYHOIO
MaTepiajly noKa3aHa y BeJIMYMHAX TUCKY Ta Pi3HUIi IBUAKOCTeI Ha rpaHULAX KaHaay. MaTeMaTHYHUI onuc Tedii
B'A3KO-IVIACTUYHOI GapoTpomHOi PpiAMHM y KaHajJax CKJIaAHOI reoMeTpii /J03BOJIIE 3 MaKCHMMaJIbHOIO
y3araJIbHeHiCTI0 mapaMeTpiB BCTAHOBUTHU 3aJI€KHICTh B’SI3KOCTi i rpaHMYHOr0 3Ha4YeHHsI Hanpy>KeHHs 3pylIeHHA
BiJ, TUCKY.
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Introduction

The majority of processes of chemical and
food technologies take place in conditions of
barotropicity. Local pressure values that occur
during the flow of viscoplastic materials
determine the level of mechanophysical or
mechanochemical transformations. The
dependence of viscosity on pressure at the macro
level reflects intermolecular interactions, and the
dependence of the shear threshold on pressure in
Bingham material shows a change in the degree
of consolidation of material elements [1].

The study of the movement of Bingham
materials provides the necessary information in
order to qualitatively and scientifically organize
the various processes of material processing
[2; 3]. The motion of Bingham materials, like the
motion of any other material with non-
Newtonian rheology, equally depends on the
equation of state and on the boundary conditions
in which motion occurs [4]. Boundary conditions
ensure the uniqueness of the solution and its
connection with the shape of the motion area,
and the equation of state determines the general
form of the solution [5].

Analysis of recent research and
publications.

The classic Bingham material implies the
constancy of density, viscosity, and fluidity
threshold. A material which does not satisfy these
conditions is considered nonclassical. The
dependence of the characteristics of the equation
of state on the arguments is a power or rational
function of the invariants of the deformation rate
tensor [6-8]. The introduction of pressure into
the equation of state as an argument is much less
common, but it is quite consistent with the
tradition, meaning that the classical equations of
state, being unable to correspond to real
materials, requires a non-classical extension. One
of these types of expansion is the introduction of
pressure dependence into the equation of state
through viscosity and yield threshold. In
combination with the barotropic conditions, a
model is obtained that covers many real
materials of food and chemical technologies. The
materials used there are characterized by a wide
variety of properties, especially in the food
industry. Often there are mixtures of materials of
different nature, acting as binders, fillers,
thickeners, dyes, flavors, stabilizers, etc. [9; 10].
In terms of their function in the finished product,
each of the materials listed here makes a certain
contribution to the equation of state. For low-
viscosity materials, the role of the components in

the mixture plays a lesser role than for high-
viscosity materials, being limited to convective
mass transfer [11;12]. For highly viscous
materials, the components in the mixture change
the equation of state, predetermining the general
properties of the flow. The local values of shear
stress pressure arising during the flow determine
the level of mechanophysical and
mechanochemical effects on the material
components. The dependence of viscosity on
pressure reflects intermolecular interactions at
the macro level, and the pressure dependence of
the fluidity threshold in a Bingham material
usually reflects a variable degree of consolidation
of the structural elements of the material.
Features of the movement of highly viscous
materials, including those of Bingham, are the
main factor in the design of worm (screw)
machines. In these machines, the main element of
the working chamber is a trapezoidal channel, the
sides of which can be straight or curved
segments. The cross sections of such channels are
usually approximated by a rectangle [13-15].
This approximation raises the question of which
rectangle is the best. The isoperimetric
approximation is usually used [16]. The entire
working chamber of the worm machine is a set of
channels with different cross sections, which are
replaced by a set of rectangular channels of the
same length. The walls of the channels are
formed by the inner surface of the machine body
and the outer surfaces of the worms (screws) or
worm elements (if the worm is composite) [14-
17]. The movement of the worm relative to the
body means the movement of various walls of the
channel in different directions. Despite the
numerical differences, the speed of movement of
all the walls of the channel is proportional to the
speed of rotation of the worm, and depends on
the angle of elevation of its helix [16; 17]. To
increase the pressure and shear stresses in the
material located in the working chamber of the
machine, the channels of which it consists are
made shallow [15-17]. In such channels, the
height of the rectangle lying in the cross section
can be considered small in comparison with the
width, so that the channel can be considered flat.

Results of the research and their
discussion

We consider the flow of barotropic
compressive material in a flat channel, viscosity
and shear threshold, which depend on pressure.
The motion of the boundaries is assumed to be
purely longitudinal, and the flow field is not
longitudinal. The transverse component of the
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velocity appears due to the dependence of the
parameters of the rheological model on the
pressure. Flow simulation is carried out in two
stages. At the first stage, we consider the
rheological model of the flow of Bingham
material, but without compression. In the second
stage we study the influence of barotropic

a

compression factor. When considering the flow
model, we used the method of superpositions
[18; 19].

The flow in the channel in cross and
longitudinal sections is shown in Fig. 1.

b

Fig. 1. Flow diagram of the material in the channel: a - cross section; b - longitudinal section

The equations of flow in stresses are as follows:
oP 0 ot
T=ma 8y =0,(zy);
oz o0z oy

ov, Ov

oz oy

ov. 0y
—2+—2=0; v,=0,(2,Y); p=puP)l,= (+—K)?
, =0, Y5 = p(P)l, Z.k(auk 50

ou,
ov,

T ., 0L
Ty = (u+ (—+ )
I,” oy,

(1)

2 =272 + ZTZZy; r=1(P).

where 7., and 1, - components of the shear
stress tensor in the material; P - pressure in the
material; z and y - longitudinal and transverse
coordinates in the channel, respectively; v, and v,
- longitudinal and transverse components of the
velocity of materials in the channel, respectively;
u and t - viscosity and fluidity threshold of the
material, respectively.

Based on the method of superpositions, which
is described in [20-22], relation (1) leads to the
problem of flow with longitudinal velocity v,
which depends on the variables z and y, which is
defined as a trinomial for the variable y, whose
coefficients depend only from the longitudinal
coordinate. This idea is a factorization of the
decision and is an approximation to the exact
solution. The solution in this form corresponds to
the boundary conditions of the flow, resulting in
two equations regarding the width of the solid
core and its boundaries. If the flow of Bingham

material occurs with constant viscosity values
and a shear threshold, the model equations
immediately obtain the values of the boundary of
the core and its velocity. In this case, when the
viscosity and the shear threshold depend on the
pressure, the final equations are not algebraic but
mixed, ie differential algebraic. The equations
also allow us to find the dependence of the
pressure on the longitudinal coordinate, after
which we can obtain the dependences for the
boundaries of the solid core and determine the
speed of its motion.

The essence of the proposed approach is to
express the component of the stress tensor 7,
through the component 71, both for the
equilibrium equation in stresses and for the
condition at the core boundaries [21; 22]. Thus,
the component t,, is expressed through the
component 7, as follows:

ov’ .
— - (1xy7)
Tzz _ F aé/L )
— - + +
7, ov, 3 L2 0 (ov, de
ol 0¢, * 0g,
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z
‘/:V_Er
_Y,
f—h,
h
FL:E;

where L - the length of the rectangular
channel; h - the height of the rectangle in the
cross section of the channel; I'+ - coordinates of
the boundaries of the solid core, signs "+" and "-"
indicate the values of flow velocities located
between the upper boundary of the channel and
the core (plus), and located between the lower

boundary of the channel and the core (minus).

0<d <1,

0<¢ <1; (2)

._r
v h

If for the transverse derivative of the
longitudinal flow velocity we use an estimate:
ov; C(wEo)(Fpt) o i which we - the
¢
longitudinal velocities of the channel boundaries,
and ux - velocity of the solid core, then the

relation 222 can be presented as follows:
z-Z
Yy

ov;
Tzz x + 6
e oF pe0ty), p= TR 3)
& w—p, —F2 - [T dg
9¢, * 0¢,
It should be noted that the notation of the flow transition F;—0 can be performed without losing
equation in stresses by dimensionless the driving force of the flow. All of the above is

coordinates & and £ leads to the fact that the

derivative of the pressure along the longitudinal
coordinate acquires the factor F;, which due to
the geometry of the channels is always much
higher than one. In the extreme case, when F;, =0
the driving force of the process, ie the
longitudinal pressure gradient disappears. But it
should be noted that with an unlimited increase
in the length of the channel, the pressure
difference at its ends increases so that the
pressure gradient remains a finite value. To show
this fact, it is necessary to use dimensionless

pressure P. The pressure P is associated with

dimensionless pressure P by multiplier P’ in
such a way, that the pressure difference at the
ends of the channels is equal P and P F, ~1.
Then, in fact the multiplier F; is not present ant

the pressure gradient P; and the boundary
dP 1

B drzy _

equivalent, the operation of dividing the
components of the stress tensor z; and 7, by the
amount of pressure change in the transverse
direction at a distance of the channel width,
which equals to (PK_PH)h/L_ In order not to

enter new symbols, instead of 7, and ;—Zy we
adopted the dimensionless components
722 /((P,~P,)h/ L) Ta 75y /((P,—P,)h /L)

In dimensionless coordinates, the derivatives
of the component 7, in the directions have the
same order: 47z _ dryy Taking into account this

dg,  d¢
ratio and the above, the following equations and

boundary conditions for the value of the
longitudinal velocity uzi(z,y) can be written as

follows:

d¢, 1+F2P*(AF ) d&’

T, ()=
v, (h)y=w";
U;(F+) =V,

T = %4_% .
zy H ay 62 4

7
s V2 ;
JLHF2(P)2- (LT 57)?
v, (=h)=w";
v, 7)=v,.

(4)
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After integrating equation (4), we obtain the
+

following expression for velocity Uz .

X _h dP £
v (6L.6) = 2uds, 1+ FP*(1F %)

where c1 and cg - constants that need to

be found using boundary conditions.
Substitution in equation (5) values &=+1,

and ;/i and anso the considtion (1) at the

h dP 1

+cé+(F —

O (9 gye i
agL dé/L , (5)

boundaries of the solid core leads to the following
system of equations for czf:

2udg, 1+FZP (L-7")

h dP 1

+FfﬁA+ +C,+C, =W';

F2HA-

2ud¢ 1+F2P (1+y)  “h

h dP (r)?

2ud¢ 1+F2P (L+77)

_hdp

—C +C, =W ;

JrFfﬁA*}/+ —cy+¢C, =

(7_)2 +F2:

S 2udg 1+FP(A+y) Y
Ay + C,y +¢C,;

72

dP y'

(6)

’ 2p+ + +C1= )
dg, 1+FRP'(1-y") JLFF2(PY )2 (L-7")?

dP -7—7+C _ ?\/5 :
dg, L+FP (U+y) T L+ RA(P 2 A+y )
At = ij 8U§d§ .
0¢, 7 0g,

From the last two equations, the expressions
for ¢y are substituted into the first two equations,
after which these constants are excluded. The
third equation of the system (6) and the

-y A+7)

_2pW W) oo 24

difference of the last two equations leads to two
equations to determine the pressure and limits of
the core:

1+F2P (1+y%) 1+F2P (1+y) hdP/dc,

+ -

Chaprag A @ )r A r)]

y y T2 {

1+F2P (1—y") 1+F2P (l+y) dP/d¢,

_w+w  h dP L=y

1 1 } %

LR(P (- ) LF(P -y )

@-7)° 1

Uy >

As seen, the expression for determining the
velocity of a solid core v is a first-order equation
for pressure |3(§L), and the pressure itself must

satisfy the boundary conditions at the ends of the
channel: 5(4] :0) = |5H; |5(§| :1) = |3K To do this,
there is one integration constant, and the value vy

is the second integration constant. The first two
equations in (7) are used to find the core

4pdg | 1+FIPT(A-7") 1+|:gp*(1_
L

+FfE[A+(1—7/+) +A (L) ]
7))
boundaries , + for a material in which u and  are

constant values, dP Thus we obtain the

=const*
L

equation for determining the value vy while the
boundaries , + of the core become constant, and
A =0.

Based on the above, the flow model of
nonclassical Bingham material, which is
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described by the system of equations (7) can be
extended to materials that are compressed and
satisfy the conditions of barotropicity. Barotropic

conservation of matter and the type of diagonal
components of the strain rate tensor [23; 24].
Thus, the equation of state and conservation of

material differs from non-compressible material the amount of matter can be written as follows:

in the general form of the equation of

o, =—Po, +| u+—= o, +80k_260mo_ ; (8)
ik ik T| H \/E oF,  oF, 30F, i |
0 0 )
E(Pvz)Jr@(PUy):O'
ov. 0Ou, 20v
L= | =S,k _Z77m 52| 9
: z'*(aﬁ oF  30F, JJ

where o, - components of the full stress representations for the values p* and A* change

tensor in the material. as follows:
It follows that expressions and equations (3) -
(7) retain their general form, and the
ov, +26(1J~8pu; 5]
T AV ;
. o (1 0pv; o
W' —u —F—| = 2d& (17 y°
. L%iPJ%LéM 7)
ov
oz oy p dP{ dP dy
A 21(1 (204 5].
g \P* a¢,

Thus, equations (9) with formulas (10) form a
model of compressible barotropic Bingham
material with a pressure-dependent viscosity and
shear threshold.

It should be noted that obtaining the equations
of this model is based on two basic elements. The

first of them is that the derivatives dv; were

o¢
qualitatively evaluated, and the essence of the
second element is that in dimensionless variables
the longitudinal and transverse derivative
components 7, have the same order. Adopting
the above assumptions, the model takes the form
of equations (9).

Further development of the model can be
done in two directions. In the first direction, for
the values p* and A* a priori estimates are made
using the boundary conditions on the walls of the
channel and at its ends. Then, as already noted,
equations (9) are solved with respect to the

pressure P(z) and the core boundaries y*(z),
and for the latter the equations are algebraic. The

other direction, the values p* and A* are
considered functions of the coordinate z(£| ). To

determine them, it is necessary to use expression
(6) the same way as to determine the speed Uf.

In this case, given that the velocity U;—“ depends

on the values y*, and p" and A* contain
derivatives on z, to determine the boundaries of
the core f (z) we obtain nonlinear differential

equations of the second order. For an
unambiguous possibility of solving these
equations, it is necessary to set conditions at the

: + £,
ends of  the channel:  »*({ =0)=yy;

y (¢ =D)=y{ - Thus, (9)
transformed into a set of three differential

equations are

. . +
equations - two second-order equations for y~,

and one first-order differential equation for
pressure, in which the value of the constant
velocity of the core vy is absent.

Next, we considered some solutions of the
flow model in the approximation F, = 0, ie,
regardless of the choice of one of the two
described directions, and we derive first-order
equations for the smallness of the parameter F2,
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within the above mentioned first direction of the
study.

Returning to equation (7), it should be noted
that it includes a small parameter F;, which is
quite small for the channels that form the
working chamber of the worm machine [25].

Therefore, it is expedient to consider the solution

of these equations in the approximation F; = 0. In

this case, for the derivative dP the following
dg

first-order differential equation is obtained:

[—Uw+w : ] dp_dP ||

When solving this equation, we must first
consider a flow with fixed boundaries, the driving
force of which is the pressure gradient. In this
flow w+* = w- = 0. Based on this, to determine the

dg, \ARh
where APy = P - P,

It should be noted that even when the values u
and 7 have a fairly simple dependence on
pressure P, this equation is not integrated in the
quadratures. For each specific

dependencies ,U(E) and T(ﬁ) we require a
numerical solution. However, there is a special

case when, on the one hand, it is possible to
obtain a clear result of a large community, and on

2_-_
h d¢, dP

= F [A* (1—7+)+A’(1—;/’)].

d_P( i M o j p=u(P), 7=7(P),

type of

wWrw LW+ W
Zhjﬁl on 4P
dg, +|1- f_ + déy -
T b T
d¢,  dP d¢,  dP
d, | | dc,

(11)

value of the pressure gradient dP at fixed

dg
boundaries, we obtain the quadratic equation of
the following form:

(12)

the other hand - with a significant limitation of
this community. This is the case when the values
u(P) and z-(|5) are proportional to each other. If

the coefficient of proportionality between them is
denoted by 4, then for an arbitrary nature of the

dependence, for example, ﬂ(ﬁ), for pressure P
we obtain the following relationship:

P dP Pl S O,
R ,u(P) AR h ARN{ 2h
Relation (13) is a continuation of expression
(12), where the square sign is preceded by a plus
sign. The choice of the sign is due to the fact that
if in formula (12) 7=0, u= const, then for v, we
obtain the value of the velocity of the viscous
Newtonian flow on the axis of the flat channel.

Therefore, the choice of the "plus” sign satisfies
such correspondence. The value vx s determined

from the condition that P=P, when ¢ =1.

ﬁ(W+—W) 20, -u | dP _5 * dp 5 dP
2h AR, ARh dgL dg, d¢g,

This equation allows only a numerical solution
dP By
dgy

because it includes all degrees

_ﬂvJ gL'

58

(13)

Hence we get the expression to determine the
velocity of the core Uk'

h (F +/1 _7
> I
In the general case, when W¢W¢0. The

result of solving relation (11) leads to the
following equation:

v == (14)

(15)

coarsening, this equation can be reduced to the
previous one, which belongs to the case wr=w= 0.
To do this, we must return to relation (11), from
which it follows that in the right part we have the
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squares of the terms of which the expressions in
square brackets are composed. From here we can
see that if w*=w= 0 then we obtain equation (12).

Therefore, instead of equation (15) we can write
an equation close to it of the following form:

2
dP _[Lfogou #Ww)) )l afuep pswrw)) b
dZ, | R|hAR,  ARM R|hAR, h AR

2
R=1+ “O“‘L-_L_-(w*—w-) /|1-
4h B -P

Limiting the case when T( P) = /1/1( P) for value

vr we obtain the following formula for
determining the velocity of the core:
2
+ - F +2
o Worw h (Frd) o (17)

2 2 F

u

In order to obtain the equation of the first
approximation for the value of the small
parameter F;, we must return to equations (7). It
is necessary to present all the input values in the
form of series of F2, as this parameter is
presented in these equations only in second
degree. It is necessary to decompose the pressure
P, viscosity and shear threshold. In the first

7 (-7 )+7, (1+76)=—%Po* (2-

2(P. —PO)

(16)

+
equation in (7), the term with the values A

should be left in the zero approximation due to
the presence of the multiplier F2;. In expansions
of all quantities, zero approximations are marked
with the index ‘"zero", and the first
approximations - with the index "two". Omitting
all intermediate transformations due to their
cumbersomeness, the final result takes the form
of the following linear system of equations to
determine the coordinates of the boundaries of

the core yg—r :

vi—v: =B (L7 )+ Py —(Le 75 )+

—0 N
where P - zero approximation for pressure.
This notation is introduced in (18) in order

not to be confused with the notation. P’ from the
boundary conditions for pressure P(gL) =hR.
The system of equations (18) is not bounded

by constraints /= Ax and has a universal form. If
the relation between 7t and pin the form of

proportionality takes place, then as yy (¢ ) and

0, _@[Ag (170 )+ A0 (1470)]

dP°

Volo g v, w—w 4(P);
g e ) T e
dg,
dp,
d¢, 1 du, = |; (18)
dﬁo_ =0 _—lﬁo PZ
u(P°) dP
dg,
_ [ dR,
r(PO)' dg, 1 dr, 5|
dP® | dP, T(§°)d5 o2
dg. \d¢g,

|50(§|_) we should substitute (17) and (16) as

functions in the system of equations (7), which is
taken with zero approximation. Decomposition of
the expression for the velocity of the core vy gives
for the second approximation the following
expression, which can be considered an equation
for the specified value of pressure P,:

db, dinu(P’) 5 (19)

h dpP° 3 \3 L
Zlu(ﬁo)dé,l_[(l_?/o) _(1+7/0) }_(W —W’)

d¢, dg.  dg C
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This first-order linear equation for P, is

integrated in quadratures based on the zero
approximation, if known. For the case when

7= Ay, all values are known; and P(O)(Q_) - by

equation (13), then the values 7oi are as follows:

T
oAz PO —w) ()|
2hdP
d¢,

° T dP° T
g

Conclusion

Thus, within the framework of the proposed
model, the equations of zero and the second
approximation are obtained to determine the
characteristics of the Bingham flow in a flat
channel. The non-limiting F, parameter
assumption was used, given the possible
applications to fluid flows in helical channels.
Equations (7), (18) and (19) are general and do
not depend on hypothesis. Different types of
dependence y(P) and 7(P) can be studied only
numerically. The hypothesis of proportionality of
viscosity and shear threshold in a real situation,
when u and rare arbitrary values, characterizes
by the parameter A the degree of their difference
from each other in the interval of the pressure
axis (Po, Pr). The result expressed by formula (14)
actually means that the velocity of the quasi-solid
core is determined by the degree of deviation of
the values u and 7 and the average value of the
inverse viscosity at the same pressure range. As
can be seen from formula (15), the velocity of the
solid core depends on both the sum and the
difference in velocities at the channel boundaries.
The compressibility of the Bingham material is
shown in the values p" and A%, it can be stated
that for long channels in the zero approximation
the compressibility has no effect on the flow, and
in only the second approximation it does. The
explanation for this fact is that it is believed that
at F; = 0 the average pressure gradient remains a
finite value, ie the pressure difference at the ends
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