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Abstract  
In this article we observed the modeling the movement of viscous-plastic material, compressed with indicators that 
depend on the pressure in the channels of complex geometry of technological equipment. As the material we chose 
the Bingham fluids with two constant parameters - viscosity and pressure threshold. We consider the flow in the 
flat channel. The motion of the boundaries is assumed to be purely longitudinal, and the flow field is not 
longitudinal. The transverse component of the velocity appears due to the dependence of the parameters of the 
rheological model on pressure. Flow simulation was carried out in two stages. At the first stage, we considered the 
rheological model of the flow of Bingham material, but without compression. In the second stage, we studied the 
influence of barotropic compression factor. The superposition method was used when considering the flow model. 
According to the results of the simulation, we obtained a flow model of nonclassical Bingham material, which can be 
extended to materials that are compressed and satisfy the conditions of barotropicity. Within the framework of the 
proposed model, we obtained the equations of zero and the second approximation to determine the characteristics 
of the Bingham flow in a flat channel. The obtained formulas allow to determine the velocity of the quasi-solid core, 
which is determined by the degree of deviation of the viscosity and shear threshold, and the average value of the 
inverse viscosity at the same pressure range. It is established that for long channels in the zero approximation the 
compressibility does not have a significant effect on the flow, but has an effect only in the second approximation, 
while the average pressure gradient remains a finite value, ie the pressure difference at the channel ends becomes 
infinite. For barotropic compressible material, this means that if the pressure at one end of the channel becomes 
infinite, the density of the material at this end must also become infinite. Thus, when the value of pressure tends to 
infinity, the value of density remains a finite value. Mathematical description of the flow of viscous-plastic 
baratropic fluid in the channels of complex geometry of technological equipment allows to establish the 
dependence of viscosity and limit value of shear stress on pressure with the maximum generalization of 
parameters. 
Keywords: fluid; viscous-plastic; barotropic, flow; model; channel. 

 

МОДЕЛЮВАННЯ ТЕЧІЇ В'ЯЗКО-ПЛАСТИЧНОГО БАРОТРОПНОГО МАТЕРІАЛУ, 
ЩО СТИСКАЄТЬСЯ В КАНАЛАХ СКЛАДНОЇ ГЕОМЕТРІЇ 
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Анотація 
Розглянуто особливості моделювання руху в'язко-пластичного матеріалу, що стискається з показниками, 
залежними від тиску в каналах складної геометрії технологічного обладнання. Як матеріал обрано 
бінгамовські рідини з двома постійними параметрами – в’язкістю та порогом зрушення, які залежать від 
тиску. Розглядається течія в пласкому каналі. Рух границь передбачається чисто поздовжнім, а поле течії 
при цьому є поперечним. Моделювання течії здійснювалось в два етапи. На першому етапі розглядається 
реологічна модель течії бінгамівського матеріалу, але без стискання. На другому етапі проводилось 
вивчення впливу фактора баротропного стискання. При розгляді моделі течії використано метод 
суперпозицій. У рамках запропонованої моделі отримані рівняння нульового та другого наближення для 
визначення характеристик бінгамівської течії в пласкому каналі. Стискаємість в'язко-пластичного 
матеріалу показана у величинах тиску та різниці швидкостей на границях каналу. Математичний опис течії 
в'язко-пластичної баротропної рідини у каналах складної геометрії дозволяє з максимальною 
узагальненістю параметрів встановити залежність в’язкості і граничного значення напруження зрушення 
від тиску. 
Ключові слова: рідина; в'язко-пластична; баратропна; течія; модель; канал. 
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Introduction 
The majority of processes of chemical and 

food technologies take place in conditions of 
barotropicity. Local pressure values that occur 
during the flow of viscoplastic materials 
determine the level of mechanophysical or 
mechanochemical transformations. The 
dependence of viscosity on pressure at the macro 
level reflects intermolecular interactions, and the 
dependence of the shear threshold on pressure in 
Bingham material shows a change in the degree 
of consolidation of material elements [1]. 

The study of the movement of Bingham 
materials provides the necessary information in 
order to qualitatively and scientifically organize 
the various processes of material processing 
[2; 3]. The motion of Bingham materials, like the 
motion of any other material with non-
Newtonian rheology, equally depends on the 
equation of state and on the boundary conditions 
in which motion occurs [4]. Boundary conditions 
ensure the uniqueness of the solution and its 
connection with the shape of the motion area, 
and the equation of state determines the general 
form of the solution [5]. 

 

Analysis of recent research and 
publications. 

The classic Bingham material implies the 
constancy of density, viscosity, and fluidity 
threshold. A material which does not satisfy these 
conditions is considered nonclassical. The 
dependence of the characteristics of the equation 
of state on the arguments is a power or rational 
function of the invariants of the deformation rate 
tensor [6–8]. The introduction of pressure into 
the equation of state as an argument is much less 
common, but it is quite consistent with the 
tradition, meaning that the classical equations of 
state, being unable to correspond to real 
materials, requires a non-classical extension. One 
of these types of expansion is the introduction of 
pressure dependence into the equation of state 
through viscosity and yield threshold. In 
combination with the barotropic conditions, a 
model is obtained that covers many real 
materials of food and chemical technologies. The 
materials used there are characterized by a wide 
variety of properties, especially in the food 
industry. Often there are mixtures of materials of 
different nature, acting as binders, fillers, 
thickeners, dyes, flavors, stabilizers, etc. [9; 10]. 
In terms of their function in the finished product, 
each of the materials listed here makes a certain 
contribution to the equation of state. For low-
viscosity materials, the role of the components in 

the mixture plays a lesser role than for high-
viscosity materials, being limited to convective 
mass transfer [11; 12]. For highly viscous 
materials, the components in the mixture change 
the equation of state, predetermining the general 
properties of the flow. The local values of shear 
stress pressure arising during the flow determine 
the level of mechanophysical and 
mechanochemical effects on the material 
components. The dependence of viscosity on 
pressure reflects intermolecular interactions at 
the macro level, and the pressure dependence of 
the fluidity threshold in a Bingham material 
usually reflects a variable degree of consolidation 
of the structural elements of the material. 

Features of the movement of highly viscous 
materials, including those of Bingham, are the 
main factor in the design of worm (screw) 
machines. In these machines, the main element of 
the working chamber is a trapezoidal channel, the 
sides of which can be straight or curved 
segments. The cross sections of such channels are 
usually approximated by a rectangle [13–15]. 
This approximation raises the question of which 
rectangle is the best. The isoperimetric 
approximation is usually used [16]. The entire 
working chamber of the worm machine is a set of 
channels with different cross sections, which are 
replaced by a set of rectangular channels of the 
same length. The walls of the channels are 
formed by the inner surface of the machine body 
and the outer surfaces of the worms (screws) or 
worm elements (if the worm is composite) [14–
17]. The movement of the worm relative to the 
body means the movement of various walls of the 
channel in different directions. Despite the 
numerical differences, the speed of movement of 
all the walls of the channel is proportional to the 
speed of rotation of the worm, and depends on 
the angle of elevation of its helix [16; 17]. To 
increase the pressure and shear stresses in the 
material located in the working chamber of the 
machine, the channels of which it consists are 
made shallow [15–17]. In such channels, the 
height of the rectangle lying in the cross section 
can be considered small in comparison with the 
width, so that the channel can be considered flat. 

 

Results of the research and their 
discussion 

We consider the flow of barotropic 
compressive material in a flat channel, viscosity 
and shear threshold, which depend on pressure. 
The motion of the boundaries is assumed to be 
purely longitudinal, and the flow field is not 
longitudinal. The transverse component of the 
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velocity appears due to the dependence of the 
parameters of the rheological model on the 
pressure. Flow simulation is carried out in two 
stages. At the first stage, we consider the 
rheological model of the flow of Bingham 
material, but without compression. In the second 
stage we study the influence of barotropic 

compression factor. When considering the flow 
model, we used the method of superpositions 
[18; 19]. 

The flow in the channel in cross and 
longitudinal sections is shown in Fig. 1.  

 

 

 
  a      b 

Fig. 1.  Flow diagram of the material in the channel: a – cross section; b – longitudinal section 

 
The equations of flow in stresses are as follows: 
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where τzz and τzy – components of the shear 

stress tensor in the material; Р – pressure in the 
material; z and y – longitudinal and transverse 
coordinates in the channel, respectively; z and y 
– longitudinal and transverse components of the 
velocity of materials in the channel, respectively; 
µ and τ – viscosity and fluidity threshold of the 
material, respectively. 

Based on the method of superpositions, which 
is described in [20–22], relation (1) leads to the 
problem of flow with longitudinal velocity z,  
which depends on the variables z and y, which is 
defined as a trinomial for the variable y, whose 
coefficients depend only from the longitudinal 
coordinate. This idea is a factorization of the 
decision and is an approximation to the exact 
solution. The solution in this form corresponds to 
the boundary conditions of the flow, resulting in 
two equations regarding the width of the solid 
core and its boundaries. If the flow of Bingham 

material occurs with constant viscosity values 
and a shear threshold, the model equations 
immediately obtain the values of the boundary of 
the core and its velocity. In this case, when the 
viscosity and the shear threshold depend on the 
pressure, the final equations are not algebraic but 
mixed, ie differential algebraic. The equations 
also allow us to find the dependence of the 
pressure on the longitudinal coordinate, after 
which we can obtain the dependences for the 
boundaries of the solid core and determine the 
speed of its motion.  

The essence of the proposed approach is to 
express the component of the stress tensor τzz 
through the component τzy both for the 
equilibrium equation in stresses and for the 
condition at the core boundaries [21; 22]. Thus, 
the component τzz is expressed through the 
component τzy as follows: 
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z

L
  ; 0 1L  ; 

y

h
  ;  0 1L  ;    (2) 
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where L – the length of the rectangular 

channel; h – the height of the rectangle in the 
cross section of the channel; Г± – coordinates of 
the boundaries of the solid core, signs "+" and "-" 
indicate the values of flow velocities located 
between the upper boundary of the channel and 
the core (plus), and located between the lower 
boundary of the channel and the core (minus).  

If for the transverse derivative of the 
longitudinal flow velocity we use an estimate: 
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, in which w± – the 

longitudinal velocities of the channel boundaries, 
and k – velocity of the solid core, then the 

relation zz
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It should be noted that the notation of the flow 
equation in stresses by dimensionless 
coordinates 

L  and   leads to the fact that the 

derivative of the pressure along the longitudinal 
coordinate acquires the factor FL, which due to 
the geometry of the channels is always much 
higher than one. In the extreme case, when FL →0 
the driving force of the process, ie the 
longitudinal pressure gradient disappears. But it 
should be noted that with an unlimited increase 
in the length of the channel, the pressure 
difference at its ends increases so that the 
pressure gradient remains a finite value. To show 
this fact, it is necessary to use dimensionless 

pressure P . The pressure Р is associated with 

dimensionless pressure P  by multiplier Р* in 
such a way, that the pressure difference at the 
ends of the channels is equal Р*; and Р FL ~1. 
Then, in fact the multiplier FL is not present ant 

the pressure gradient P ; and the boundary 

transition FL→0 can be performed without losing 
the driving force of the flow. All of the above is 
equivalent, the operation of dividing the 
components of the stress tensor zz and yz by the 
amount of pressure change in the transverse 
direction at a distance of the channel width, 
which equals to   / .к нP P h L  In order not to 

enter new symbols, instead of zz  and zy  we 

adopted the dimensionless components 

  / /zz к нP P h L   та   / /zy к нP P h L  .  

In dimensionless coordinates, the derivatives 

of the component zy  in the directions have the 

same order: zy zy
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After integrating equation (4), we obtain the 

following expression for velocity z


: 
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where c1 and c
2
  – constants that need to 

be found using boundary conditions.  
Substitution in equation (5) values 1   , 

and    and anso the considtion (1) at the 

boundaries of the solid core leads to the following 
system of equations for 
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From the last two equations, the expressions 

for с1 are substituted into the first two equations, 
after which these constants are excluded. The 
third equation of the system (6) and the 

difference of the last two equations leads to two 
equations to determine the pressure and limits of 
the core: 
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As seen, the expression for determining the 
velocity of a solid core k is a first-order equation 
for pressure  LP  , and the pressure itself must 

satisfy the boundary conditions at the ends of the 
channel:  0l нP P   ;  1l кP P   . To do this, 

there is one integration constant, and the value k 
is the second integration constant. The first two 
equations in (7) are used to find the core 

boundaries    for a material in which µ and τ are 

constant values, 

L

d P
const

d


. Thus we obtain the 

equation for determining the value k while the 
boundaries    of the core become constant, and 

0. 

Based on the above, the flow model of 
nonclassical Bingham material, which is 
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described by the system of equations (7) can be 
extended to materials that are compressed and 
satisfy the conditions of barotropicity. Barotropic 
material differs from non-compressible material 
in the general form of the equation of 

conservation of matter and the type of diagonal 
components of the strain rate tensor [23; 24]. 
Thus, the equation of state and conservation of 
the amount of matter can be written as follows: 
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where і  – components of the full stress 

tensor in the material. 
It follows that expressions and equations (3) - 

(7) retain their general form, and the 

representations for the values and  change 
as follows: 
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1
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1

z z
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d

P

w d
P

 
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
  

 

 
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 

   
  

     
 

   
  



F

; 

1yz
z y

dP dP dP

z y dP dP dy


 



  
   

   
;   (10) 

1 z

L L

d
P




 

  
   

  
 . 

 
Thus, equations (9) with formulas (10) form a 

model of compressible barotropic Bingham 
material with a pressure-dependent viscosity and 
shear threshold. 

It should be noted that obtaining the equations 
of this model is based on two basic elements. The 

first of them is that the derivatives z







 were 

qualitatively evaluated, and the essence of the 
second element is that in dimensionless variables 
the longitudinal and transverse derivative 
components τzy have the same order. Adopting 
the above assumptions, the model takes the form 
of equations (9). 

Further development of the model can be 
done in two directions. In the first direction, for 
the values and  a priori estimates are made 
using the boundary conditions on the walls of the 
channel and at its ends. Then, as already noted, 
equations (9) are solved with respect to the 

pressure ( )P z  and the core boundaries ( )z  , 

and for the latter the equations are algebraic. The 
other direction, the values and  are 
considered functions of the coordinate ( ).Lz   To 

determine them, it is necessary to use expression 

(6) the same way as to determine the speed z
 . 

In this case, given that the velocity 
z
  depends 

on the values   , and and  contain 

derivatives on z, to determine the boundaries of 

the core ( )z


 we obtain nonlinear differential 

equations of the second order. For an 
unambiguous possibility of solving these 
equations, it is necessary to set conditions at the 
ends of the channel: 

0( 0) ;L      

( 1)L L     . Thus, equations (9) are 

transformed into a set of three differential 

equations – two second-order equations for   , 

and one first-order differential equation for 
pressure, in which the value of the constant 
velocity of the core k is absent. 

Next, we considered some solutions of the 
flow model in the approximation FL = 0, ie, 
regardless of the choice of one of the two 
described directions, and we derive first-order 
equations for the smallness of the parameter F2

L 
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within the above mentioned first direction of the 
study. 

Returning to equation (7), it should be noted 
that it includes a small parameter FL, which is 
quite small for the channels that form the 
working chamber of the worm machine [25]. 

Therefore, it is expedient to consider the solution 
of these equations in the approximation FL = 0. In 
this case, for the derivative 

L

dP

d

 the following 

first-order differential equation is obtained: 

2 2

2 2
4
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L L
k
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w w w w

dP dP
h h

d dw w dP
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dP dPd d

d d
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
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               
       

    
         

 

–    22
1 1L

h
 



       
 

F .   (11) 

 
When solving this equation, we must first 

consider a flow with fixed boundaries, the driving 
force of which is the pressure gradient. In this 
flow w+ = w- = 0. Based on this, to determine the 

value of the pressure gradient 

L

dP

d

 at fixed 

boundaries, we obtain the quadratic equation of 
the following form: 

 
2

2k k

L h h

dP

d P h P h

   
  



   
       

    

, ( )P  , ( )P  ,     (12) 

where ΔPh = Pк - Pн. 
It should be noted that even when the values μ 

and τ have a fairly simple dependence on 
pressure P , this equation is not integrated in the 
quadratures. For each specific type of 

dependencies ( )P  and ( )P  we require a 

numerical solution. However, there is a special 
case when, on the one hand, it is possible to 
obtain a clear result of a large community, and on 

the other hand - with a significant limitation of 
this community. This is the case when the values 

( )P  and ( )P  are proportional to each other. If 

the coefficient of proportionality between them is 
denoted by 

P , then for an arbitrary nature of the 

dependence, for example, ( )P , for pressure P  

we obtain the following relationship: 

0 ( ) 2
h

k k k
L

h h P

P dP

P P P h P h h

  
  

 

   
              

 .     (13) 

 

Relation (13) is a continuation of expression 
(12), where the square sign is preceded by a plus 
sign. The choice of the sign is due to the fact that 
if in formula (12) 0, const, then for k we 
obtain the value of the velocity of the viscous 
Newtonian flow on the axis of the flat channel. 
Therefore, the choice of the "plus" sign satisfies 
such correspondence. The value k s determined 

from the condition that кP P  when 1L  . 

Hence we get the expression to determine the 
velocity of the core k: 

 
 

0

2

, .
2

LP

k

P

Fh dP
F

F P













      (14) 

In the general case, when ww0. The 
result of solving relation (11) leads to the 
following equation: 

   
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2
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h h L L L h L

w w w wdP dP dP dP
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               
             
               

.  (15) 

 

This equation allows only a numerical solution 

because it includes all degrees .
L

d P

d
 By 

coarsening, this equation can be reduced to the 
previous one, which belongs to the case w+=w-= 0. 
To do this, we must return to relation (11), from 
which it follows that in the right part we have the 
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squares of the terms of which the expressions in 
square brackets are composed. From here we can 
see that if w+=w-= 0 then we obtain equation (12). 

Therefore, instead of equation (15) we can write 
an equation close to it of the following form: 

   
2

21 1k k
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d R h P P h R h P h P
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    
  

       
    

.     (16) 

Limiting the case when    P P   for value 

k we obtain the following formula for 
determining the velocity of the core:  

 
2

2 2
k

Fw w h
R

F








  
   .  (17) 

In order to obtain the equation of the first 
approximation for the value of the small 
parameter FL we must return to equations (7). It 
is necessary to present all the input values in the 
form of series of F2L as this parameter is 
presented in these equations only in second 
degree. It is necessary to decompose the pressure 

P , viscosity and shear threshold. In the first 

equation in (7), the term with the values 


  

should be left in the zero approximation due to 
the presence of the multiplier F2L. In expansions 
of all quantities, zero approximations are marked 
with the index "zero", and the first 
approximations - with the index "two". Omitting 
all intermediate transformations due to their 
cumbersomeness, the final result takes the form 
of the following linear system of equations to 
determine the coordinates of the boundaries of 

the core 
2
 : 
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where 
0

P  – zero approximation for pressure.  
This notation is introduced in (18) in order 

not to be confused with the notation. 
0

P  from the 

boundary conditions for pressure   0LP P  .  

The system of equations (18) is not bounded 
by constraints and has a universal form. If 
the relation between τ and μin the form of 

proportionality takes place, then as 
0 ( )L   and 

0( )LP   we should substitute (17) and (16) as 

functions in the system of equations (7), which is 
taken with zero approximation. Decomposition of 
the expression for the velocity of the core k gives 
for the second approximation the following 
expression, which can be considered an equation 
for the specified value of pressure 2P : 
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   (19) 
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This first-order linear equation for 2P  is 

integrated in quadratures based on the zero 
approximation, if known. For the case when 

, all values are known; and (0)( )LP   – by 

equation (13), then the values 
0
  are as follows: 

0 0

0 0 0 0

( )( ) ( )2 / 1
2

L L L

P w w P

dP hdP dP

d d d



 

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 
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 
 

    
 
 
 

.   (20) 

 

Conclusion 
Thus, within the framework of the proposed 

model, the equations of zero and the second 
approximation are obtained to determine the 
characteristics of the Bingham flow in a flat 
channel. The non-limiting FL parameter 
assumption was used, given the possible 
applications to fluid flows in helical channels. 
Equations (7), (18) and (19) are general and do 
not depend on hypothesis. Different types of 
dependence (Р) and (Р) can be studied only 
numerically. The hypothesis of proportionality of 
viscosity and shear threshold in a real situation, 
when µ and  are arbitrary values, characterizes 
by the parameter λ the degree of their difference 
from each other in the interval of the pressure 
axis (P0, PL). The result expressed by formula (14) 
actually means that the velocity of the quasi-solid 
core is determined by the degree of deviation of 
the values µ and , and the average value of the 
inverse viscosity at the same pressure range. As 
can be seen from formula (15), the velocity of the 
solid core depends on both the sum and the 
difference in velocities at the channel boundaries. 
The compressibility of the Bingham material is 
shown in the values and , it can be stated 
that for long channels in the zero approximation 
the compressibility has no effect on the flow, and 
in only the second approximation it does. The 
explanation for this fact is that it is believed that 
at FL = 0 the average pressure gradient remains a 
finite value, ie the pressure difference at the ends 

of the channel becomes an infinite value. For 
barotropic compressible material, this means that 
if the pressure at one end of the channel becomes 
infinite, the density of the material at this end 
must also become infinite. That is, the density 
should increase at least as the value 1/F2

L. But 
then the values and , which include the 
density (Р) also become infinitely large so that 
their product on the small parameter F2L becomes 
finite; and decomposition by a small parameter in 
equations (7) cannot be performed. However, 
since such decompositions have been performed, 
this indicates that the dependence of the density 
of the material on the pressure is limited. Thus, 
when the value of pressure tends to infinity, the 
value of density remains a finite value. Therefore, 

when constructing the 
0

( )P  included in and 

 we should use dependencies that satisfy the 

condition 
0

lim ( )P  , when 
0

( )P  . 

Based on the above, the presented model of 
the flow of barotropic fluid in a flat channel 
allows to establish the dependence of the 
viscosity and the limit value of the shear stress on 
the pressure with the maximum generalization of 
the parameters. This model allows a number of 
refinements and complications that may be 
associated with a more accurate definition of 
and , as well as various numerical studies of 
the influence of the dependences (Р) and (Р) on 
the characteristics of viscoplastic flow. 
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