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Abstract  
In this paper, we study the controlling of chaotic behaviours in an autocatalytic dissipative chemical system governed 
by a forced modified Duffing – Van der Pol (DVP) oscillator driven by various sinusoidal periodic forces. The external 
sinusoidal periodic forces considered are sine wave, modulus of sine wave and rectified sine wave. The effects of the 
sinusoidal forces and the perturbation parameter Γ on chaotic motions of the chemical system have been strongly 
analyzed. Controlling of chaotic behaviours have been investigated through bifurcation structures, Lyapunov 
exponent, phase portrait, Poincar´e section and time series. Coexistence of several attractors and hysteresis 
phenomenon have been studied in detail in the system with sinusoidal excitations.  
Keywords: Autocatalytic dissipative chemical system; bifurcation; chaos; hysteresis; sinusoidal excitation. 
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Анотація  
У цій статті вивчено керування хаотичною поведінкою в автокаталітичній дисипативній хімічній системі, 
керованій примусово модифікованим осцилятором Даффінга – Ван дер Поля (DVP), що приводиться в дію 
різними синусоїдальними періодичними силами. Розглянуто зовнішні синусоїдальні періодичні сили: 
синусоїдальна хвиля, модуль синусоїди та випрямлена синусоїдальна хвиля. Ретельно проаналізовано вплив 
синусоїдальних сил і параметра збурення Ґ на хаотичні рухи хімічної системи. Керування хаотичною 
поведінкою досліджено за допомогою біфуркаційних структур, експоненти Ляпунова, фазового портрета, 
перерізу Пуанкаре та часових рядів. Детально вивчено співіснування кількох атракторів та явище гістерезису 
в системі з синусоїдальними збудженнями. 
Ключові слова: автокаталітична дисипативна хімічна система; біфуркація; хаос; гістерезис; синусоїдальне збудження. 
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Introduction: 
A chemical reaction is called autocatalytic if at 

least one of the reaction products acts as a catalyst 
in the same or in one of the coupled reactions. 
Reactions of this type have the property that the 
rate equations are nonlinear, that is, the reaction 
is very slow in the beginning but steadily increases 

as more products are formed. The simplest 
autocatalytic chemical reaction is of the following 
form: 

       𝐴 + 𝑝 𝐵 → (𝑝 + 1)𝐵   (1)    
where A is the reactant and B is the autocatalyst, 
and the integer p ≥ 1 is the order of the reaction 
(number of autocatalyst molecules involved in a 
reaction). While the most common case is p = 1, 
the higher order reactions with p ≥ 2 have been 
considered in recent years [1; 2]. There are many 
chemical and biological reactions, which are 
autocatalytic. Some examples are, (i) the reaction 
of oxalic acid with permanganate, here Mn2+ ions 
are products and also act as a catalyst (ii) haloform 
reaction (iii) decomposition of Arsine is catalysed 
by Arsenic, which is produced in the reaction  
2As H3 → 2As + 3H2, (iv) binding of oxygen by 
haemoglobin, (v) DNA replication (vi) Formoss or 
Butlerov reaction, (vii) Tin pest (viii) Vinegar 
syndrome and (ix) photographic processing of 
silver halide film/paper [3–7]. 

Chemical systems may exhibit chaotic 
behaviour if they contain certain elements of 
dynamical feedback. While chaos is intriguing, it is 
not clear what role it plays in real chemical 
processes, in living systems and otherwise. One 
suggestion is that chaotic systems possess a 
virtually unlimited wealth of dynamical 
behaviours and these behaviours can be brought 
under control in a deliberate and selective 
manner. Controlling chaos can be understood as a 
process or mechanism which enhances existing 
chaos or creates chaos in a dynamical system 
when it is useful or beneficial and suppresses it 
when is harmful. Controlling chaos is very 
important in many circumstances from the point 
of view of preventing disaster and collapse in a 
dynamical system. In recent years, after the 
pioneering work of Ott, Grebogi and Yorke (OGY) 
[8], controlling chaos has become more and more 
interesting in academic research and practical 
applications [9–16]. The first control experiment 
in chemical chaos was carried out in a BZ reaction 
by the group of Showalter in 1993. The authors 
applied a map-based, proportional-feedback 
algorithm to stabilize periodic behaviour in the 
chaotic regime of an oscillating BZ reaction [17]. 
The dynamical behaviours of the Brusselator 

chemical system with impulse input [18], 
amplitude and frequency modulated forces [7; 19] 
and with different shape of periodic forces [15] 
have been also investigated. Recently, Suddalai 
Kannan et al. [6] studied the control of chaos and 
bifurcation by nonfeedback methods in an 
autocatalytic chemical system. 

To derive a chaotic system trajectory to a 
periodic orbit, one may tune the system key 
parameters and monitor and control the resulting 
dynamics. However, as common practice in 
chaotic system, a simple way is to use external 
periodic forcing to dominate and modify the 
undesired system dynamics. It is conceivable that 
a large enough periodic signal would render a 
chaotic system periodic. But the signals of small 
amplitude are usually preferable. Reducing chaos 
in a dynamical system by applying either an 
external weak periodic signal or a random signal 
has proven not only possible but quite effective for 
many control purposes [14; 15; 20–24]. The 
present paper is organized as follows. In Section 2, 
we present the chemical model and its kinetic 
equation. In Section 3, we present types of 
sinusoidal periodic forces and their associated 
mathematical representations. In Section 4, we 
analyze the control of chaos caused by various 
sinusoidal forces. In Section 5, we analyze the 
phenomenon of hysteresis due to various 
sinusoidal periodic forces. Finally, Section 6 
contains our conclusion. 

 

Chemical model and its equation of 
motion 

Nonlinear dynamics has become increasingly 
important in chemical kinetics. A variety of 
examples are known to exhibit periodic and 
chaotic variations in the concentrations of 
reacting species. It is well known that oscillatory 
and chaotic behaviours are associated with 
onlinear phenomena and the corresponding 
mathematical models are governed by 
deterministic differential equations. The 
differential equation models for chemical schemes 
have been separated traditionally from those for 
physical systems. There have been many methods 
devoted to set up the relationship between 
chemical system and physical system by means of 
transformation. Of these methods, Samardzijia’s 
nonlinear transformation is one of the mostly used 
methods and has been extensively quoted [25]. 
This methods succeeds in converting some famous 
models such as Van der Pol-Duffing [26], Lorenz 
[27], Rossler spiral chaos [28], forced negative 
stiffness Duffing [29], a Chua’s circuit [30] etc. in 
to mass action chemical schemes which preserve 
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the phase space qualitative features of the original 
system. The generic model for nonlinear chemical 
oscillations used in the study based on the kinetic 
scheme which can be described by the following 
chain of equations: 

𝐴 
𝐾1
→   𝑈    (2) 

𝐵 + 𝑈 
𝐾2
→   2𝑈   (3) 

𝐷 + 𝑈  
𝐾3
→    𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠    (4) 

𝑈 
𝐾4
→   𝑈′    (5) 

𝐵 + 𝑈′ 
𝐾5
→   𝑉   (6) 

𝑉 
𝐾6
→    𝑈′ +  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠    (7) 

 

In a flow reactor, the incoming fluxes of the 
respective species A, B and D and the inverse of the 
resident time, Ki, i = 1, 2...6, are controlled 
externally. It has been shown that, if one derives 
the kinetic equations under the assumptions of the 
law of mass action, that steps (1–4) may give a 
bistability and that steps (4–6) may be handled as 
a feedback on the constant parameter of the 
autocatalytic step. Based upon the laws of mass 
action and conservation and assuming that the 
sink of the product is a first order reaction, the 
simple mathematical model for self-oscillations in 
some nonlinear chemical system with external 
periodic signal defined as follows:

 

𝑥 ̈ +  𝜇 (1 − 𝑥2 ) �̇�  +  𝛼 𝑥 +  𝛽 𝑥3 +  Γ = 𝐹(𝑡)                                                            (8) 
 

where x is proportional to the concentration of 
species U and represents the displacement, �̇� and 
�̈�  are the velocity and acceleration respectively. 
Parameters µ, α, β and Γ respectively denote the 
damping coefficient, linear and cubic nonlinear 
restoring parameters and nonlinear parameter. 
F(t) is an external sinusoidal periodic forces. 
Equation (8) is a forced modified Duffing-vander 
Pol (DVP) oscillator equation. Recently, many 
authors investigated certain nonlinear 
phenomena and the active control of chaotic 
oscillations in this nonlinear chemical system 
modeled by a modified Van der Pol-Duffing 
oscillator [12; 31]. For the particular case where 
the nonlinear term Γ = 0 and Eq. (8) is reduced to 
the classical Duffing-vander Pol oscillator 
equation. The nonlinear parameter Γ mark the 
difference between the oscillator Eq. (8) and the 
equation of classical Van der Pol – Duffing 
oscillator. This classical driven DVP oscillator has 
been widely studied in the context of various 
physical, chemical and engineering problems [32–
37].  

 

Types of sinusoidal periodic forces. The 
mathematical representations of the sinusoidal 
periodic forces are the following: 

(a) Sine wave  

The sine wave is represented by 

F(t) = F (t + 2π/ω) = f sinωt. 
(b) Modulus of sine wave 

The modulus of sine wave is given as  
F(t) = f|sin(ωt/2)|. 

(c) Rectified sine wave 
The mathematical representation of rectified sine 

wave is 

 (11) 
 

where f and ω are the amplitude and frequency of 
the sinusoidal periodic force 

 

Controlling of chaos due to various sinusoidal 
periodic forces. 

(i) Chaos control in the system without Γ (ie. Γ = 
0). First we analyze the controlling of chaos due to 
the various sinusoidal periodic forces applied on 
the system Eq. (8) with Γ = 0. When Γ = 0, the 
system (Eq.8) is reduced to classical DVP 
oscillator. For our numerical calculation, we fix the 
parameters values as α = −1.0, β = 5.0, µ = 0.4 and 
ω = 1.0. Equation (8) is solved with different 
sinusoidal forces by fourth order Runge-Kutta 
method with time step (2π/ω)/200. Numerical 
solution corresponding to first 500 drive cycle is 
left as transient. We analyzed the behaviors of the 
system by varying the forcing amplitude of the 
each periodic sinusoidal force. Figure 1 shows 
leading Lyapunov exponent (λm) diagrams of 
various sinusoidal forces. The maximal Lyapunov 
exponent (λm) is computed using the algorithm 
given in ref [38]. If λmax < 0, the disturbed trajectory 
will eventually be attracted to a stable periodic 
orbit. λmax > 0 reveals an unstable and chaotic 
trajectory and λmax = 0 means that the disturbed 
oscillation and the original oscillation stay apart 
be a constant mean distance for an indefinite 
duration until perturbed again. The observed 
dynamical states over the range f ∈ [0.5] are listed 
in table 1.  
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Fig. 1. Lyapunov exponents λ versus the parameter f for the system (Eq.8) driven by a (a) sine wave (b) rectified sine 

and (c) modulus of sine wave forces. The values of the other parameters of the system fixed as α = −1, β = 5.0, µ = 
0.4,Γ = 0 and ω = 1.0. 

 

When the system (Eq.8) driven by a sine wave 
force, the system has a leading Lyapunov exponent 
λ ≈ 0.198 at f = 0.01. Now the sine wave force is 
replaced by a rectified sine wave and modulus of 
sine wave forces in the system (Eq.8), the leading 
exponent is shown in Figs.1(b) and 1(c). It can be 

observed from the figures that a significant 
reduction in λ is obtained. Significant suppression 
of chaos is achieved when the rectified sine wave 
and modulus of sine wave forces are turned on, 
which is clearly seen in Figs.1(b) and 1(c). 

 

Table 1 
The dynamics of the system (Eq.8) for the different ranges of f  with ω = 1 

Types of forces Range of  f Sign of λm Dynamics 

sine wave (0.25-1.25);(1.71-2.5);(2.75- 
2.90); (3.1-5) 

0 - - - periodic orbits 

 (0-0.25);(1.25-1.71);(2.5-2.9) + + + + chaotic orbits 

Rectified sine wave (0-3.25);(3.81-5) - - periodic orbits 

 (3.25-3.81) + chaotic orbit 

Modulus of sine wave (0-4.0);(4.5,4.75) - 0 - periodic orbits 

 (4.0-4.5);(4.75-5) + + chaotic orbits 

 

(ii) Chaos control in the system with Γ (ie. Γ ≠ 0). 
In this section, we analyze the conditions for 
suppressing chaotic oscillations or instabilities in 
the modified and forced DVP oscillator (ie. in 
Eq.(8), Γ ≠ 0) driven by various sinusoidal periodic 
forces, by doing the numerical simulation of the 
system (Eq.8). 

(a) Effect of sine wave force 
First we consider the effect of the force f sinωt. 

Figure 2 shows the maximal Lyapunov exponent 
diagram of the system (Eq.8) driven by a sine 
wave force for three values of Γ = 0.008, 0.25 and 
0.5 respectively. Table 2 summarizes the 
numerical simulations of the system (Eq.8) as a 
function of parameter f for three fixed values of Γ. 
From this table, we note that in the f intervals 

periodic behaviour is recovered for f values above 
certain threshold values as in the previous case 
(ie. Γ = 0). As can be seen from Fig.2, the 
suppression of chaos occurs (indicated by λ = 0) 
when the perturbation parameter Γ is introduced 
in the system (Eq.8). When the parameter Γ 
increases from small value, the chaotic orbit is 
significantly reduced, this is clearly seen in 
Fig.2(a-c). For example, the periodic regions of the 
system without Γ (ie. Γ = 0) occur at 
(0.25, 1.25), (1.71, 2.5), (3.1, 5) whereas in the 
system with Γ (ie. Γ ≠  0) the periodic regions occur 
at (1.5, 4), (4.1, 5) for Γ = 0.5. Phase portrait is a 
geometric representation of the orbits of a 
dynamical system in a phase plane, which is 
drawn between position (x) and velocity (y (= x˙)).
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Fig. 2. Lyapunov exponents λ versus the parameter f for the system (Eq.8) driven by a periodic sine wave force for 

three values of Γ. The values of the other parameters of the system fixed as α = −1, β = 5.0, µ = 0.4 and ω = 1.0 
 

Table 2 
Details of the dynamical behaviour of the system (Eq.8) in the presence of sine wave 

force for three fixed values of Γ as a function of f 

value of Γ Range of f Dynamical 
behaviour 

0.008 (0.0–1.25);(1.75–2.5);(2.75–3.0);(3.1–5) periodic orbits 

 (1.25–1.75);(2.5–2.75);(2.75–3.1) chaotic orbits 

0.25 (0.0–1.1);(1.25–2.5);(2.65–4.25);(4.3–5.0) periodic orbits 

 (1.1–1.25);(2.5–2.65);(4.25–4.3) chaotic orbit 

0.5 (1.5–4.0);(4.1–5.0) periodic orbits 

 (0.0–1.5);(4.0–4.1) chaotic orbits 
 

The trajectory of a point in a phase space 
represents how the state of a dynamical system 
changes over time, which is drawn between time 
(t) (in secs) and position (x). To understand the 
dynamics of the system with sine wave force, we 
studied the phase portrait and the corresponding 
Poincar´e map for two values of f chosen in the 
chaotic and periodic regions in Fig.2(c). Figure 3 
shows the phase portraits and the corresponding 

Poincar´e maps at f = 1.5 and 4.0 with Γ = 0.5. From 
these figures we can clearly confirm the 
occurrence of the chaotic and period−2T orbits in 
the system. Time evolution of the system (Eq.8) 
driven by a sine wave force at f = 1.5 and 4.0 are 
shown in Fig.4. In Fig. 4(a) irregular oscillations 
occur at f = 1.5 where as periodic oscillations occur 
at f = 4.0 in Fig.4(b).  

 
Fig. 3. Phase portraits and the corresponding Poincar´e maps for the system (Eq.8) driven by a periodic sine wave 

force for two values of f chosen in the chaotic and periodic regions in Fig.2(c). The values of the other parameters of 
the system fixed as α = −1, β = 5.0, µ = 0.4, Γ = 0.5 and ω = 1.0 
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Fig. 4. Time evolution of the system (Eq.8) is driven by a periodic sine wave force for two values of f chosen in the 

chaotic and periodic regions in Fig.2(c). The values of the other parameters of the system fixed as  
α = −1, β = 5.0, µ = 0.4, Γ = 0.5 and ω = 1.0. 

 

(b) Effect of modulus of sine wave force 
When the sine wave force is replaced by a 

modulus of sine wave force, suppression of chaos 
is also achieved in the system (Eq.8) which is 
clearly evident in Fig.5. When the external forcing 
in the system (Eq.8) is a modulus of sine wave 

force and if Γ = 0.008, the system has a leading 
Lyapunov exponent λ > 0 in the range 4.1 < f <4.5 
and 4.75 < f <5, this is clearly seen in Fig.5(a). Now 
if Γ = 0.25 and Γ = 0.5, the leading Lyanpunov 
exponent λ > 0 is shown in Fig.5(b) and 5(c).  

 

 
Fig. 5. Lyapunov exponents λ versus the parameter f for the system (Eq.8) driven by a periodic modulus of sine wave 

force for three values of Γ. The values of the other parameters of the system fixed as  
α = −1, β = 5.0, µ = 0.4 and ω = 1.0 

 

Table 3 summarizes the numerical simulations 
of the system (Eq.8) as a function of parameter f 
for three fixed values of Γ. From this table, we note 
that the regular behaviour occurs in the wider 
region of f. One thus notices that regular behaviour 
over a wider range of f occurs for three values of Γ. 
So with an optimal choice of the strength of Γ, 
suitable regular motion can be achieved in 
appropriate intervals of f. Figure 6 shows the 

phase portraits and the corresponding Poincar´e 
maps at f = 4.1 and 1.0 with Γ = 0.25. From these 
figures we can clearly confirm the occurrence of 
the chaotic and period−T orbits in the system. 
Time evolution of the system (Eq.8) driven by a 
modulus sine wave force at f = 4.1 and 1.0 is shown 
in Fig.7. In Fig. 7(a) irregular oscillations occur at 
f = 4.1 whereas periodic oscillations occur at f = 1.0 
in Fig.7(c). 

Table 3 
The dynamics of the system (Eq.8) in the presence of modulus of sine wave for three fixed values of Γ as a function of f 

value of Γ Range of f Dynamical 
behaviour 

0.008 (0.0-4.0);(4.5-4.75) periodic orbits 

 (4.0-4.3) chaotic orbits 

0.25 (0.0-4.1);(4.25-5.0) periodic orbits 

 (4.1-4.25) chaotic orbit 

0.5 (0.0-4.0);(4.1-5.0) periodic orbits 

 (4.0-4.1) chaotic orbits 
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Fig. 6. Phase portraits and the corresponding Poincar´e maps for the system (Eq.8) driven by a periodic modulus of 
sine wave force for two values of f chosen in the chaotic and periodic regions in Fig.5(c). The values of the other 

parameters of the system fixed as α = −1, β = 5.0, µ = 0.4, Γ = 0.5 and ω = 1.0 
 

 
 

Fig. 7. Time evolution of the system (Eq.8) driven by a periodic modulus of sine wave force for two values of f chosen 
in the chaotic and periodic regions in Fig.5(c). The values of the other parameters of the system fixed as  

α = −1, β = 5.0, µ = 0.4, Γ = 0.5 and ω = 1.0. 
 

(c) Effect of rectified sine wave force 
Then we study the controlling of chaos in the 

system (Eq.8) driven by a rectified sine wave force. 
Figure 8 shows the maximum Lyanpunov 
exponent of the modified and forced DVP 
oscillator with rectified sine wave force for three 

values of Γ = 0.008, 0.25 and 0.5 as the amplitude f 
is varied. The effect of Γ is clearly seen in Fig.8. 
When the parameter Γ increases, the region of 
periodic orbits also increases. Table 4 summarizes 
the numerical simulations of the system (Eq.8) as 
a function of the parameter f for three values of Γ.   

 
 

Table 4 
The dynamics of the system (Eq.8) in the presence of rectified sine wave for three fixed values of Γ as a function of f 

value of  Γ Range of f Dynamical 
behaviour 

0.008 (0.0–3.25);(3.8–5.0) periodic orbits 

 (3.25–3.8) chaotic orbits 

0.25 (0.0–3.25);(4.25-4.5) periodic orbits 

 (3.25–4.25);(4.5-5.0) chaotic orbit 

0.5 (0.0–4.0) periodic orbits 

 (4.0–5.0) chaotic orbits 
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Fig. 8. Lyapunov exponents λ versus the parameter f for the system (Eq.8) driven by a periodic rectified sine wave 

force for three values of Γ. The values of the other parameters of the system fixed as  
α = −1, β = 5.0, µ = 0.4 and ω = 1.0 

 

 
Fig. 9. Phase portraits and the corresponding Poincar´e maps for the system (Eq.8) driven by a periodic rectified sine 

wave force for two values of f chosen in the chaotic and periodic regions in Fig.8(b). The values of the other 
parameters of the system fixed as α = −1, β = 5.0, µ = 0.4, Γ = 0.25 and ω = 1.0 

 

From the table 4, the effect of Γ in chaos 
suppression is quite obvious: periodic motions 
dominate a large area in the figures (Figs.8a-c). In 
this system, chaos and period-doubling 
bifurcation exist when f = 3.75 and f = 3.32, as 
shown in Fig.9, where Figs.9(a-c) is the phase 
portraits and Figs.9(b-d) is the corresponding 
Poincar´e maps. The above results show that a 
relatively weak external periodic force can 
significantly change the dynamics of the system. 

Hysteresis phenomenon. The coexistence of 
several attractors gives rise to the possibility of 
hysteresis, that is, the possibility of jumping 
through the coexisting attractors in a way that is 

not reversible, when we fix a parameter back to its 
original value. It is present in the mechanical 
system, electromagnetism, chemical kinetics and 
nonlinear optics. In this section, we analyze the 
occurence of hysteresis phenomenon in the 
system (Eq.8) driven by various sinusoidal 
periodic forces. 

First we consider the system (Eq.8) with sine 
wave force. We fix the parameters value as α = 
−1.0, β = 5.0, µ = 0.4, ω = 1.0 and Γ = 0.5. Hysteresis 
phenomenon is observed in the system (Eq.8) with 
sine wave force. The bifurcation diagram is plotted 
by varying f in the forward direction as well as in 
the reverse direction is shown in the Figs. 10(a-b). 
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Figures 10(a) and 10(b) are obtained by varying 
the amplitude f from 3.0 in the forward direction 
and from the value 5 in the reverse direction. 
Different paths are followed in Figs. 10(a) and 
10(b). Hence the system (Eq.8) with sine wave 
force exhibit the hysteresis phenomenon, when 
the control parameter f is varied smoothly from a 
small value to a large one and then back to the 
smaller value. Next we analyze the existence of 

hysteresis phenomenon in the system (Eq.8) with 
modulus of sine wave force. Hysteresis is realized, 
when f is varied in the forward and reversed 
directions in the interval f ∈ [3, 5] for Γ = 0.5, which 
is shown in Figs. 10(c)and 10(d). Finally we 
consider the effect of rectified sine wave force in 
the system (Eq.8). Hysteresis phenomenon is also 
realized for this force which is shown in Figs. 10(e) 
and 10(f) 

 

 
Fig. 10. Bifurcation diagrams of the system (Eq.8) driven by a (a-b) sine wave (c-d) modulus of sine wave and (e-f) 
rectified sine wave forces, when f is varied in the forward direction from 3 to 5 (Figs (a),(c) and (e)) and reverse 

direction (Figs. (b), (d) and (f)). The values of the other parameters of the system fixed as  
α = −1, β = 5.0, µ = 0.4, Γ = 0.5 and ω = 1.0. 

 

Conclusion 
In this work, we have studied the control of 

chaos via external forcing in an autocatalytic 
dissipative chemical system governed by a forced 
modified Duffing – Van der Pol (DVP) oscillator. 
The external forces considered are sine wave, 
modulus of sine wave and rectified sine wave. 
Active control of chaos in an autocatalytic 
chemical system with these three forces and 
perturbation parameter Γ have been analyzed. 
From the numerical simulation made, it should be 
noted that for certain values of amplitude of the 
external forces and the perturbation parameter Γ, 

the chaotic behaviours can be controlled and even 
reduced to a periodic oscillation. The phenomenon 
of hysteresis and coexistence of several attractors 
are also obtained. The periodic and chaotic 
behaviours of the chemical system are analyzed 
through bifurcation diagram, Lyapunov exponent, 
time series, phase portrait and Poincar´e map.  

Analytical methods such as multiple-scale 
perturbation and Melnikov techniques can be 
employed to the system to investigate certain 
nonlinear behaviours such as vibrational 
resonance, stochastic resonance, homoclinic 
chaos, hysteresis, chaos, etc. These will be studied 
in future.
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