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Abstract  
Regenerative heat exchangers have a large surface area per unit volume and low cost, compared with other types of 
heat exchangers. The complexity of their proper design and optimization is one of the reasons why these devices are 
not widely used. The article describes a temperature-wave approach to the modeling of heat regenerators. The 
verification of the novel temperature wave’s model was held by the experimental data of the regenerator used in 
ventilation systems. The temperature waves method for computation of a heat regenerator makes it possible to take 
into account the influence of the following factors: the variable gas temperature at the regenerator’s inlet, processes 
of non-stationary heat conduction in the elements of packing, the longitudinal thermal conductivity of the packing. 
Despite a complex mathematical apparatus used to justify the method of temperature waves for designing 
regenerators, the very procedure for calculating such a heat exchanger has proven to be relatively simple and 
convenient for computer calculations. 
Keywords: regenerative heat exchangers; heat regenerators; modeling; air-to-air heat exchanger. 
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Анотація 
Регенеративні теплообмінники мають велику площу поверхні на одиницю об'єму і низьку вартість, у 
порівнянні з іншими типами теплообмінників. Складність їх правильного проектування та оптимізації є 
однією з причин, чому ці пристрої не набули широкого використання. У статті описано температурно-
хвильовий підхід до моделювання регенеративних теплообмінників. Перевірка нової моделі температурних 
хвиль проводилася по експериментальним даним для регенератора, який використовується в системах 
вентиляції. Метод температурних хвиль для розрахунку теплового регенератора дозволяє врахувати вплив 
таких факторів: змінна температура газу на вході в регенератор, процеси нестаціонарної теплопровідності в 
елементах насадки, поздовжня теплопровідність насадки. Незважаючи на складний математичний апарат, 
використаний для обґрунтування методу температурних хвиль для проектування регенераторів, сама 
процедура розрахунку такого теплообмінника виявилася відносно простою і зручною для комп'ютерних 
розрахунків. 
Ключові слова: регенеративні теплообмінники; регенератори тепла; моделювання; теплообмінник повітря-повітря. 
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Introduction 
Regenerative heat exchangers or heat 

regenerators are batch heat exchangers in which 
heat is first transferred from a hot gas to a high 
heat capacity packing. Next this heat is transferred 
from the packing to a cold gas. Thus, the hot and 
cold gases are alternately in contact with the solid 
material forming the packed bed. These two 
phases are the reason why the regenerative heat 
exchangers must operate in pairs to work 
continuously.  

Regenerative heat exchangers have numerous 
applications in the industry, from very high 
temperatures to cryogenic conditions. However, 
the complexity of the calculations and 
optimization of regenerative heat exchangers 
limited their expansion. 

The simplest mathematical model in heat 
regenerators proposed by Nusselt [1] has also 
been used by Hausen [2; 3]. This model is based on 
the following assumptions:  
 Thermal and physical properties of the gas 

and the solid packing are constant and 
independent of temperature and position.  
 The mass flow rates and the heat transfer 

coefficients are constant.  
 The heat conductivity of packing is 

infinitely large in the direction normal to the gas 
flow and infinitely small in the direction parallel to 
the gas flow.  
 The heat transfer in the gas is negligible in 

the longitudinal and transverse directions.  
 Radiation heat transfer is small in 

comparison to the other mechanisms of heat 
transfer.  

If we accept the above assumptions, then the 
operation of the regenerative heat exchanger will 
be described by a system of linear differential 
equations with constant coefficients. When cold 
and hot gas flows have the same mass flow rates, 
this system of equations has an analytical solution. 

The nonlinear model considers the change in 
gas and bed properties as a function of 
temperature. The heat transfer coefficients are 
then calculated from these properties at every 
moment and place. This is important for the more 
realistic simulation of high-temperature 
regenerators. The calculation of a nonlinear model 
is much more time-consuming, but this is not a 
considerable problem with modern computers.  

 When the assumption of negligible axial heat 
conductivity in the solid packing is loosen the heat 
conduction mechanism in the packing in the 
direction of flow must be considered. This effect is 

shown to be significant for the bed made from 
metallic or thick ceramic walls [4–6].  

If the calculation takes into account the 
longitudinal thermal conductivity of the heat 
exchanger packing, then such a heat exchanger 
must be considered as a whole. Therefore, 
currently widely used calculation methods based 
on the splitting of the heat exchanger into many 
sections require additional coordination of the 
boundary conditions at the ends of each of these 
sections. In this case, it is necessary to control the 
heat balance of the entire wall or packing of the 
heat exchanger, which requires consideration of 
the heat exchanger as one whole [7]. 

The most important assumption in the Nusselt-
Hausen model is that the thermal conductivity of 
the packing material is infinite in a direction 
perpendicular to gas flow and zero in a direction 
parallel to the gas flow. It means that the packing 
is isothermal in a direction perpendicular to gas 
flow. This is approximately true where the packing 
is thin or is made of materials of high heat 
conductivity.  

However, if the packing of the regenerator is 
constructed of material of low thermal 
conductivity, then it is necessary to take into 
account the resistance to heat transfer in the solid 
elements of packing. 

If, in addition to the longitudinal thermal 
conductivity of the heat exchanger, we try to take 
into account non-stationary heat transfer in the 
elements of packing, then the difficulties in 
designing such devices grow exponentially. 

Therefore, to consider the longitudinal thermal 
conductivity of the heat exchangers, especially in 
non-stationary heat transfer processes, it is 
necessary to develop fundamentally new methods 
and approaches. 

Theoretical substantiation of the method of 
temperature waves for modeling periodic heat 
transfer processes. Let us consider the heat 
transfer in the heat regenerator, using the wave 
approach to modeling such apparatus. 

For a mathematical description of non-
stationary heat transfer, we will adopt the 
following physical pattern of heat propagation in 
the heat regenerator. 

The entire space of the regenerator is mentally 
separated into two zones: a fixed packing, 
consisting of solid elements with stagnant zones 
adjacent to them, and a system of channels and 
voids between the elements of packing, in which 
the gas moves. 

In the packing, heat propagation occurs mainly 
due to the thermal conductivity of the contacting 
elements of the packing. 
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In the system of channels and voids penetrating 
the packing, heat is transferred by convection. 

Thus, heat in the regenerator is transferred 
along two separate paths, each of which has its 
own mechanism of heat transfer [8; 10]. The 
interaction between these heat flows occurs along 
the border of channels and voids in which the 
coolant moves. 

With the assumptions defined in this model, the 
heat removal from the packing to the moving gas 

is considered a heat sink in the problem of non-
stationary thermal conductivity of the packing. 
The heat transfer between the fluid stream and the 
solid surface is described heat balance equation 
over some increment distance. 

Taking into account the above assumptions, the 
two-dimensional differential equations of 
unsteady heat conduction in the regenerators 
packing can be written as [8; 10].  
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where Т(x,у,τ) is the current temperature of the 
heat exchanger packing, [K]; Тg(x,τ) – current 
temperature of the moving coolant, [K]; α is the 
coefficient of heat transfer from the surface of the 
packing element to the coolant flowing around it, 
[W/(K m2)]; F is the surface area per unit volume 
of heat exchanger, [m2/m3]; λх and λу – equivalent 
value of the thermal conductivity coefficient, along 
the x and y coordinate, taking into account the 
relative volume of voids in the packing, the 
number of thermal contact points, etc., [W/(m K)]; 
ρpac – bulk density of the heat exchanger packing, 
[kg/m3]; Сpac is the heat capacity of the heat 
exchanger packing, [J/(kg K)]; δ is the 

characteristic size of the heat exchanger packing 
element, [m]. 

The heat conduction equation of the 
regenerative heat exchanger packing takes into 
account the heat distribution in two coordinates. 
Coordinate x is directed along the heat exchanger 
axis and coincides with the direction of the coolant 
flow in the heat exchanger. The generalized y 
coordinate is orthogonal to the x and is directed 
along the normal to the surface of the packing 
element.  

The heat balance of the elementary coolant 
volume moving through the system of cavities 
between the packing elements can be written as a 
first-order differential equation:  
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where G is the mass flow rate of the coolant, 
referred to a unit section of the regenerative heat 
exchanger, [kg/(s·m2]; Cp is the isobaric heat 
capacity of the coolant, [J/(kg·K)]. 

When these two equations are considered 
together, they enable us to find the temperature 

distribution in the moving coolant and the packing 
itself.  

After transitioning to time operator form [11], 
assumes the equation: 
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where s is time differentiation operator, [1/s]; 
),( yxТo  initial temperature distribution in 

the packing, [K]; δ haracteristic size of the 
packing elements (radius, half thickness), [m]. 

For simplicity, hereinafter the initial 
temperature distribution will be set to zero.  

The finite integral transform [12; 13] along 
the y coordinate is performed using the kernel  
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where μn is n-th eigenvalue of the integral 
transformation along the y-coordinate. 

The inverse integral transform with respect to 
y  
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where 
2

,ny  n-th normalizing factor (square of 

the norm of the kernel of the integral 
transformation) along the y-coordinate, [m]. 

The eigenvalues of the integral transform are 
found such that type-3 boundary conditions are 
satisfied on the packing element surface, and that 
the type-2 zero boundary condition is satisfied on 
the packing element’s axis of symmetry. The 

transcendental equation for finding the 
eigenvalues in this case is  
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After the cosine transform along the y 
coordinate, the heat equation in fixed packing 
assumes the form  
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The integral transform along the x coordinate is 
performed after choosing cosine function as the 
transform kernel  
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The choice of this type of integral transform 
kernel automatically ensures the type-2 zero 
boundary conditions at the ends of the 
regenerative heat exchanger; in other words, 

there is no heat exchange along the x coordinate at 
the ends of the heat exchanger.  

After carrying out the final integral transform 
with respect to the x coordinate, Eq. (8) assumes 
the form  
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From here, we find the function that describes the temperature of the fixed packing,
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where ax and ay is packing layer thermal 
diffusivity, [m2/s]. The obtained equality allows us 

to find the solution to the packing heat equation, 
in the form of a double Fourier series:  
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Were the coefficients )(sТg

k
 do not depend on coordinates and are found according to the formula  
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Until now, the solution to the heat equation for 
the packing was obtained via finite integral 
transformations method, as described in [12; 13] 
for example.  

We introduce the concept of an eigen 
temperature wave for a given regenerative heat 
exchanger. 

If the temperature of a coolant flow 
periodically changes then it may be expanded into 
a series of harmonic temperature fluctuations of 
the moving coolant. Each of these abstract objects, 
in which the coolant temperature changes 
according to a harmonic law, we will agree to call 
a temperature wave. 

This object is called a temperature wave 
because for a stationary observer, passing by a 
coolant flow, the temperature of which changes 
according to a harmonic law, looks like the 
passage of a temperature wave. 

It is necessary to note the fundamental 
difference between the described temperature 
wave and sound or electromagnetic waves. Sound 
and electromagnetic waves exist in nature, and 
temperature waves are abstract objects used in 
regenerative heat exchanger calculations. 

If the steady operating mode of a regenerative 
heat exchanger is considered, then according to 
Prigogine’s theorem, the entropy production in 
such a heat exchanger should reach its minimum.  

It is obvious that the absolute minimum of 
entropy production in the steady process of the 
temperature wave’s passage through the packing 
of a regenerative heat exchanger will be achieved 

only when the entropy of the packing as a whole 
remains unchanged. And this mode of infinite 
temperature wave transmission through the 
packing of the regenerator, at which the packing 
entropy remains unchanged, does exist. This mode 
takes place at the moving coolant’s temperature 
fluctuation frequencies, for which the instant 
value of its temperature at the entrance to the 
packing nozzle is equal to the instant temperature 
of this coolant at the packing nozzle exit. This is 
possible only when an integer number of 
temperature waves fitted inside the heat 
exchanger packing.  

It should be noted that the heat transfer at a 
finite temperature difference is always 
accompanied by an increase in entropy. Therefore, 
the work of any heat exchanger is accompanied by 
the production of entropy. But in this case, the 
mode with zero entropy production is realized not 
in the heat exchanger, but in the packing through 
which the infinite eigen temperature wave passes.  

As the steady temperature eigenwave moves 
through the heat regenerator packing, and the 
heat inside the packing itself is redistributed, but 
the energy of the heat accumulated in the packing, 
remains unchanged.  

Let’s clarify the wave nature of the coolant 
temperature fluctuations. Not by arbitrary 
oscillation frequencies, but by eigenfrequencies 
for the given regenerative heat exchanger, i.e. such 
frequencies that a whole number of temperature 
waves fit along the length of the regenerative heat 
exchanger: 
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where Bk amplitude of temperature fluctuations in 
the k-th harmonic of a temperature wave moving 
in a coolant, [K]; h is packing layer height in a 
regenerative heat exchanger, [m]; T is period of 
operation of the regenerative heat exchanger 

(period of temperature fluctuations in the main 
temperature wave), [s]. 

We build the finite integral cosine transform 
with respect to coordinate x: 
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To find the values of the obtained integrals, we use the frequency selection rule:  
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With this in mind  
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We transition to time operator form: 
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The reasoning behind the last transform is that 

if a coolant passes through the heat exchanger 
packing and its temperature changes 
harmonically with a frequency equal to the 
frequency of one of the regenerative heat 
exchanger’s eigen temperature waves, then all 
Fourier series Eq. (12) coefficients, except one, 
will be zero. Consequently, the solution to the heat 
equation of the packing in this case can be 
simplified and presented as a simple Fourier 
series, instead of a double one Eq. (12).  

As is known from oscillation theory, the 
frequency of the forced oscillations of a system 
always coincides with the frequency of the 
external influence that causes these oscillations. 

Therefore, the frequency of the temperature 
fluctuations inside the packing element will 
coincide with the frequency of the temperature 
wave fluctuations supplied from the outside. In 
our case, this will be one of the eigen frequencies 
of the considered regenerative heat exchanger. In 
general, the length of the temperature waves 
propagating in the packing element differs from 
the length of the eigen temperature waves 
through the regenerative heat exchanger.  

As a result, if a k-eigen temperature wave is 
supplied to the input of a regenerative heat 
exchanger, then in the steady state, we obtain the 
following expression for the form of the 
temperature wave in the packing: 
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We introduce the following notation, in order to simplify:  
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With this in mind, Eq. (19) assumes the following form  
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Expanding the obtained expression into simple 
fractions, we move from the result to the original 
with respect to time. Having dropped the terms 
that correspond to the transition process, we 

obtain a solution for the steady process of the k-
eigen temperature wave passing through the 
packing of the regenerative heat exchanger: 
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If the value of the y coordinate y is fixed, then 
the obtained solution can be interpreted as the 
result of a fixed time delay of the temperature 
wave propagating in the elements of heat 

exchanger packing. For example, on the surface of 
the packing elements at у =δ, the equation can be 
written in a form that is more convenient for 
analysis 
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After elementary transformations, we obtain a simpler expression that is easier to analyze  
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where 
k

~  is the angle of temporary phase shift 

of temperature waves, [rad]. 
The physical meaning of this formula indicates 

that the amplitude of the temperature fluctuations 
in the packing is proportional to the amplitude of 
the coolant temperature fluctuations. The phase of 
the packing temperature fluctuations lags behind 
the phase of the coolant temperature fluctuations 
at the regenerator inlet by an angle 

k
~ .  

In other words, the temperature wave 
propagation rate through the packing of the heat 

exchanger is less than the speed of the 
temperature wave outside the packing, see Fig. 1.  

The heat balance of the coolant’s elementary 
volume as it moves inside the regenerator packing 
is written as differential Eq. (2), the physical 
meaning of which is that the changes in the 
temperature of the gas moving through the 
regenerator occur only through heat exchange 
with the packing.  

We will look for a solution to this equation in 
the form of a temperature cosine wave in the 
coolant flowing through the heat exchanger 
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The heat from the coolant is only transferred to 
the elements of the heat exchanger packing, and 
vice versa heat is transferred from the packed bad 
to the heat carrier flowing through it. 
Consequently, if the temperature of the packing 
element rises, then the temperature of the coolant 

should decrease, and vice versa if the packing 
cools down, then the coolant heats up. To satisfy 
these conditions, we represent the temperature 
wave on the surface of the elements of packing in 
the form of a sine wave 
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where Abk is amplitude of the k-th temperature 
wave in the packing, [K]. 

After substituting the functions of the selected 
type into the heat balance equation (2), we obtain 
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Bringing like terms and using the formula for the sine of the angle difference, we get 
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The spatial phase shift angle of the temperature fluctuations of packing element surface and coolant 
temperature fluctuations  
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where ψk angle of spatial shift of phases of 
temperature waves, [rad]. 

Taking into account the solution obtained for 
the eigen value in the packing Eq. (26), as well as 
the conclusion that the amplitudes of the eigen 

temperature waves at the inlet and output of the 
packing are equal, we obtain a relatively simple 
solution for the eigen temperature waves in the 
coolant leaving the regenerative heat exchanger:  
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The physical meaning of this formula is entirely 
obvious: as the eigen wave passes through the 
regenerator packing, its amplitude and frequency 
remain unchanged, and the phase of the wave lags 

in time by an angle k
~

, and by the angle ψk in 

space, see Fig. 1. Moreover, for temperature waves 
of different lengths, the phase shift angles are 
different.  

Formulas (14) and (33) are show that the 
propagation of a temperature wave described by 
absolutely the same dependence as the 
propagation of an ordinary wave, for example, a 
sound or electromagnetic wave. Just as with the 
propagation of electromagnetic and sound waves, 
the velocity of propagation of temperature waves 
decreases in a dense medium. The main difference 
between temperature waves and ordinary waves 

is that as a result of the superposition of sound or 
electromagnetic waves, their amplitudes add up, 
and the superposition of temperature waves 
occurs according to a completely different law.  

When merging or mixing two coolant streams, 
the temperature of the combined stream will be 
determined as the weighted average of the 
temperatures of the two mixed streams. 

Let’s considered that when we decompose the 
periodically changing temperature of the coolant 
entering the regenerative heat exchanger into a 
Fourier series, each harmonic corresponds to 
some part of the coolant flow, and these parts of 
the coolant flow are the same for all harmonics. 
Then the amplitude of the heat carrier 
temperature fluctuations after mixing two flows 
can be found by the formula 

222

nknk ВВВВ


 .         (34) 

Therefore, to obtain the correct value of the 
amplitude of the temperature wave after 
summing the two harmonics, it is sufficient to 
add the temperature waves whose amplitudes 

are equal to half of their amplitudes before 
mixing. This explains the appearance of two in 
the denominator of the formula (33).  

The solutions obtained make it possible to 
simulate the passage of an arbitrary-shaped 

periodic temperature signal through the heat 
exchanger packing. 

When we build a model of a regenerative heat 
exchanger, it is necessary to keep in mind that in 
a heat regenerator, gas flow moves alternately, 
now in one direction, then in the other. This 
problem can be solved using the linearity of 
differential equations (1) and (2). 
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Fig. 1. Propagation of eigen temperature wave in the packing of the regenerative heat exchanger 
 

As is well known, if there are two particular 
solutions to a system of linear homogeneous 
differential equations, then the sum or difference 
of these solutions will also be a solution to this 
system of differential equations. 

Since the sum and difference of the solutions to 
this problem are equal from a mathematical point 
of view, therefore the system of differential 
equations (1) and (2) have two independent 
solutions. One of these solutions corresponds to 
the counterflow of heat carriers in the considered 
heat exchanger, and the other corresponds to the 
parallel movement of heat carriers. Therefore, to 
construct a mathematical model of the 
regenerative heat exchanger, in which the coolant 
moves in opposite directions, it is necessary to add 
the solutions for warm blast and cold blast. 

Since the amplitude of the stationary 
temperature wave does not change when it passes 
through the packing, the heat balance of the gas 
and packing for the variable part of the 
temperature wave is performed automatically. 
The stationary part of the Fourier series, in which 
the solution to the heat transfer problem is 
presented, is determined from the heat balance of 
the heat exchanger as a whole. 

 

Comparison of calculation results with 
experimental data 

Let us demonstrate the application of the wave 
method of modeling the regenerative heat 
exchanger by the example of calculating a heat 
regenerator used to reduce heat losses in building 
ventilation systems. 

The results of the experimental study of this 
type of commercial heat regenerator are given in 
[14]. 

During the experimental study, the air, during 
the first 41 seconds, moved through the heat 
exchanger packing from the building to the 
outside, giving off heat to the packing. For the next 
41 seconds, the air passed through the packing in 
the opposite direction, taking back the heat from 
the heat regenerator packing. The change in the 
direction of airflow was realized by changing the 
rotation direction of the fan, driving air through 
the heat regenerator filling. 

The packing of the heat exchanger was a 
rectangular polypropylene honeycomb, inside 
which air passes. The wall thickness of 
honeycombs is 2δ = 0.25 mm. The thermal 
conductivity of polypropylene, from which the 
honeycombs was produced, is ~0.19 W/(m·K). 
The size of the rectangular channels in the 
investigated heat exchanger was 1.5x3.25 mm, the 
length of the heat exchanger was 180 mm, and the 
diameter of the heat regenerator was 198 mm. The 
article [14] presents the results of measuring the 
dependence of air and packing temperatures on 
time at the airflow rate of 51 m3/h. 

Knowing the dimensions of the heat exchanger 
and the properties of airflow that passes through 
it, it is easy to determine the Nusselt number 
characterizing the heat transfer from the packing 
surface, Nu=4. In this case, the parameter αδ/λу 
included in the transcendental equation (7) for 
finding the eigenvalues has values of the order of 
0.086. Therefore, the corresponding values, found 
by formula (7) will be close to π·n, where n is an 
integer. Therefore, when calculating the sum of 
the Fourier series with index n, we can restrict 
ourselves to calculating a relatively small number 
of terms in this series. Only the first ten terms of 
the Fourier series were summed. 
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Experimental data for comparison was 
obtained at the indoor air temperature of 23 °C 
and the air temperature outside the building of 
−6.5 °C. 

The paper [14] presents the results of an 
experimental study of air and packing 
temperatures for three successive cycles of 
regenerative heat exchanger operation. For more 
information, these data are shown below as 
repeated measurements during one period of 
regenerator work. 

Fig. 2 shows the graphs that show the 
experimental values of the air temperature at the 
heat regenerator inlet nozzle during the warm and 
cold blast, taken from [14] and the results of the 

Boltzmann approximation of these data. The half-
period of the cold blast in the regenerative heat 
exchanger is marked with a gray fill on the graph. 

The noticeable scatter of the experimental 
values of the air temperature at the inlet to the 
regenerative heat exchanger is mainly because the 
measured temperature did not repeat precisely 
during different cycles of the heat regenerator 
operation. 

W expands the input temperature signal into a 
Fourier series to build a wave model in the 
regenerative heat exchanger. 

 To determine the expansion coefficients, we 
use the formulas known from the mathematical 
analysis: 
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where fB(τ) – the function expanded in a Fourier 
series in this case, it is the function obtained as a 
result of the Boltzmann approximation of the air 
temperature at the entrance to the heat 
regenerator.  

Thus, two sets of coefficients for two Fourier 
series are obtained, one set of coefficients for the 
warm blast and another coefficient set for the cold 
blast. 

 After that, we find phase shifts for temperature 
waves in the airflow leaving the heat exchanger 

packing and for temperature waves that 
propagate in the packing itself, using formulas 
(26) and (33). 

Next all the temperature waves summarized at 
the heat exchanger outlet nozzle according to the 
rule, formula (34) given. 

For the reverse airflow, the similar calculation 
was carried out during the cold blast period. At 
this stage, it is possible to take into account, for 
example, the difference in air mass flow during the 
half-periods of the warm and cold blast. 

 
Fig. 3. Calculated values of air temperatures at the exit from the regenerative heat exchanger in the warm and cold 

blast half-periods and their measured values [14]. 
1 - air temperature at the inlet nozzle in the half-period of warm blast; 
2 - air temperature at the inlet nozzle in the half-period of cold blast; 

3 - Boltzmann approximation of the measurements of air temperature at the inlet to the heat exchanger; 
4 - measured values of the air temperature at the exit from the heat regenerator in the half-period of warm blast;  

5 - measured values of the air temperature at the exit from the heat regenerator in half-cycle of cold blast; 
6 - calculated values of air temperatures at the exit from the regenerative heat exchanger in half-cycles of warm and 

cold blast 
 

 



205 
 Journal of Chemistry and Technologies, 2023, 31(1), 195-207 

 

Since the countercurrent heat exchange 
scheme is implemented in the heat exchanger 
under consideration, the solutions obtained for 
warm and cold blasts are summed up. 

In this example, the calculation was carried out 
for the first one hundred and fifty terms of the 
Fourier series. It allows practically excludes 
fluctuations in the values of the sum of the series, 
which usually occur when the infinite Fourier 
series is finished. 

Fig. 3 shows the calculated values of the air 
temperatures at the outlet of the regenerative heat 
exchanger in the half-periods of a warm and cold 
blast and their measured values according to the 
data obtained from [14]. 

The form of the obtained graphs corresponds 
to the physics concepts of process in the packing. 
During the warm blast time, the air temperature 
rises at the outlet of the heat exchanger. And vice 
versa, during a cold blast observed the opposite 
pattern, the air temperature at the outlet of the 
regenerative heat exchanger drops. 

Fig. 4 shows the calculated and experimental 
graphs of the packing temperature at the inlet to 
the heat exchanger in the half-periods of warm 
and cold blasts. 

Graphs show good agreement between 
experimental and calculated data. 

A comparison of graphs for air temperature, 
shown in Fig. 2, and temperature change of the 
packing at the inlet to the heat exchanger in Fig. 4, 
shows that they are similar. Such a result is quite 
expected, since the temperature of the packing, 
which is thin polypropylene plates, cannot much 
differ from the temperature of the air surrounding 
this packing. It is calculated, that temperature of 
the packing surface upon the warm blast is 0.5 °C 
lower than the temperature of the air. During the 
cold blast, the packing surface is 0.5 °C warmer 
than the air. 

This result can serve as a test for assessing the 
adequacy of the wave model of heat transfer in the 
regenerative heat exchanger since the calculated 
values of the packing temperature were obtained 
by adding 150 temperature waves, and the 
amplitude and phase shift for each wave were 
calculated by the formula (26). 

With the wave method of calculating a 
regenerative heat exchanger, only the most 
necessary information is obtained about the 
temperatures of the coolant and packing at the 
inlet and outlet of the heat exchanger in the 
steady-state operation. A smaller amount of 
information obtained when calculating the 
regenerator by the wave method can be regarded 
as a price for the relative simplicity of 

implementing the wave method for calculating 
regenerative heat exchangers. 

 

Discussion  
The graphs (see Fig. 3) show that at the end of 

the cold blast half-cycle, the temperature of the 
airflow leaving the heat exchanger slows its fall 
and even rises slightly. The temperature of the 
airflow leaving the heat exchanger during the 
warm blast period behaves similarly. At the end of 
the warm blast half-cycle, the air temperature at 
the outlet of the heat exchanger stabilizes. This 
feature of the operation of the regenerative heat 
exchanger is reflected in the results of calculations 
carried out using the wave method. 

The noted feature in the course of 
temperatures of the airflow leaving the 
regenerative heat exchanger may be due to the 
processes of non-stationary heat transfer in the 
packing elements. By the end of the half-cycle of 
the regenerator operation, the thermal wave 
moving in the packing has time to exit at the other 
end of the heat regenerator. From time to time, we 
can observe this effect in the operation of 
regenerative heat exchangers. In our case, if the 
package length were longer or the heat exchanger 
operation period was shorter, then this effect 
would not be observed. Since in earlier models of 
the operation of a regenerative heat exchanger, 
non-stationary heat transfer inside the packing 
elements was not taken into account, nothing of 
the kind was noted in the calculation results from 
these models. 

When comparing the results of calculation with 
the measurements results of the air temperature 
at the heat exchanger outlet, attention pinched to 
a noticeable discrepancy between the 
experimental and calculated data, which has a 
character of systematic error. 

When the air temperature at the outlet of the 
heat exchanger increased, the results of its 
measurements turned out to be less than the 
calculated values, and if the air temperature fell, 
the measurement results turned out to be higher 
than the calculated temperature values. In 
addition, the greater the calculated rate of 
temperature change, then the larger the 
discrepancy between the measured and calculated 
values of air temperature. This character of the 
differences between the calculated and measured 
temperatures can be explained by the dynamic 
error of the instruments used to measure the 
temperature. 

According to the article [14], the time required 
to change the direction of fan rotation in the 
experimental installation was about 7 seconds. 
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According to the graphs in Fig. 2, the airflow 
temperature entering the regenerative heat 
exchanger becomes practically equal to the air 
temperature in the room (23 °С) in about 12–14 
seconds. And the same amount of time is required 
to reach the temperature outside the building 
(−6.5 °С) during the cold blast half-period. 
Therefore, in addition to the time, it takes to 
change the fan rotation direction, there is an 
additional delay of 5–7 seconds. This delay may be 
due to the thermal inertia of the sensor used to 
measure the air temperature and/or heat gains 
through the wires that connect this sensor to the 
measuring device. 

Therefore, the presence of a dynamic error in 
measuring the air temperature can explain that 
part of the discrepancy between the experimental 
and calculated data, which is systematic. 

As can be seen from the graphs, the agreement 
between the air temperature and the temperature 
of the heat exchanger packing turned out to be 
much better than the agreement between the 
calculated and experimental values for the air 
temperature at the exit from the heat regenerator. 
This can be explained by the fact that experimental 
values of the air temperature at the regenerator 
inlet were used to calculate the packing surface 
temperature. The measured temperature of the 
packing surface also included the dynamic error of 
temperature measurement. Since the rates of 
change in air temperatures at the regenerator’s 
inlet and the packing surface are very similar, the 
dynamic errors in measuring their temperatures 
turned out to be almost the same. Therefore, the 
dynamic error in measuring temperature does not 
lead to a noticeable discrepancy between the 
calculated and measured temperatures of the 
packing surface at the inlet to the heat exchanger. 

The rate of change in air temperature at the outlet 
nozzle of the heat exchanger is significantly 
different from the rate of change in air 
temperature at the inlet nozzle. Therefore, at the 
exit nozzle, discrepancies between the 
experimental and calculated values of air 
temperatures are much higher. 

A significant influence of the dynamic error in 
the measurement of rapidly changing air 
temperature on the results of evaluating the 
efficiency of regenerative heat exchangers was 
noted in the works of Ramin et al. [15–18]. Some 
methods of reducing the dynamic component of 
the devices error for a more accurate measure of 
air temperature in regenerative heat exchangers 
are also considered there. 

 

Conclusions 
The use of the wave approach to modeling 

regenerative heat exchangers makes it possible to 
take into account the influence of the following 
factors: 

• variable gas temperature at the inlet of the 
regenerative heat exchanger; 

• processes of non-stationary heat conduction 
in packing elements; 

• longitudinal thermal conductivity of the heat 
exchanger packing. 

Despite appealing to complex mathematical 
apparatus to substantiate the wave method for 
calculating the heat regenerators, the procedure 
for calculating such a heat exchanger turns out to 
be relatively simple and convenient for computer 
calculations. This is explained that calculating the 
regenerative heat exchanger by the wave method 
requires repeated repetition of the same and 
relatively simple steps for each temperature wave. 
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