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Abstract

This paper considers the problem of determining the dissipation energy during the flow of a generalized-displaced
fluid in the channels of technological equipment. It is known that during the flow of highly viscous non-Newtonian
fluids, the problem of heating this substance arises. This is primarily due to the fact that during the transportation of
the material, the dissipation mechanism takes place, which leads to overheating of the material. In its turn, this affects
the changes in the physical and chemical properties of the material and the technical and economic indicators of the
corresponding equipment. We propose a method for calculating the dissipation energy during the flow of a
generalized-displaced fluid in the channels of screw machines. To solve this problem, we used the superposition
method to construct fields of larger dimensions from fields of smaller dimensions with different boundary conditions.
A channel of flat and rectangular shape is considered. Fluid movement is carried out in the longitudinal and
longitudinal-transverse directions of the channel. To calculate the amount of energy dissipation of a generalized-
displaced fluid, it is necessary to first divide the channel sections into sections with different expressions for the flow
rate. At the same time, each of the subareas consists of two curvilinear triangles and one rectangle. The mandatory
steps of the calculations are the breakdown of the rectangle of the cross section of the straight channel, and the
calculation of the integrals from the derivatives of the velocity. The proposed method allows to calculate the energy
of dissipative heat generation when calculating the optimal parameters of technological equipment.

Keywords: fluid; generalized-displaced; dissipation; flow; channel; calculation.
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AHoTaliga

Y paHiil po60Ti po3rjAHyTO Np0o6GaeMy BU3HAaYeHHs eHeprii Aucunanii mig yac Tedii y3arajibHeHO-3pylIeHOI piAuHHA
y KaHaJ TeXHOJIOriYHOro o6/iagHaHHA. IIponoHyeTbcs MeTOh O0G6GYMCAeHHA eHeprii gucunaunii mig 4ac Teuii
y3araJibHeHO-3pylleHoi piAUHY B KaHa/IaX HIIHEKOBUX MAlUMH. /g po3B’A3aHHA AaHOI 3a/4a4i 3aCTOCOBAHO METOJ,
cynepnosuuii. Posrasaaaerbca KaHaa IJ1ackoi Ta NpAMOKYTHOI ¢popmu. Pyx piaguHM 34ilCHIOETBCA Y O34 0BXKHbBO Ta
NO3J0BXXHbO-NIONEePEeYHUX HaNpsAMKax KaHajay. [ o06GYUCIeHHS BeJIMYMHU eHeprili Aucunanii nomepeaHbo
HeOoO06XiAHO NPOBeCTH PO36GMBKY NepeTUHIB KaHAJIiB Ha BiANOBiAHI Ji/AHKM 3 pi3HMMH BUpa3aMu AJI WIBUAKOCTI
Tedii. Po36MBKa NpAMOKYTHHMKA epeTUHY NPsAMOro KaHajly Ta 004YMC/IeHHA iHTerpaJiB Bij NOXiAHUX WBUAKOCTI €
0GOB'AI3KOBUMH eTallaMHM pO3paxyHKiB. 3apONOHOBaHUIl MeTOJ A03BOJIAE OGYUC/JMTH €Hepril AUCUNATUBHOIO
TeIJIOBUAJIeHHSA B NIPoLeci po3paxyHKy ONTHMa/IbHUX IapaMeTPiB TEXHOJIOTiYHOr0 06/1aJHAHHS.
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Introduction

Thermal processes are the most common
processes in chemical and food technologies [1-3].
Today, many scientific works describe the heat
transfer of Newtonian fluids [4-5]. But there are
quite a lot of chemical compounds (polymers,
plastics, construction mixtures) and food products
(chocolate, flour, confectionery) that belong to
multicomponent systems that have a relatively
high viscosity and a non-linear nature of the flow,
these are the so-called non-Newtonian fluids [6-
7].

To assess the structural and mechanical
properties, it is necessary to know the type of
structure, the dependence of stress on the
displacement rate, as well as the amount of
dissipation [8].

It is known that during its motion, a non-
Newtonian fluid loses part of its energy, which
turns into dissipative heat [9]. Knowledge of the
amount of dissipation makes it possible to select
technological equipment with the best power
reserve, thereby reducing production costs [10].

Analysis of recent research and publications.
The class of non-Newtonian fluids is very broad. It
includes various media that have a certain degree
of elasticity, their internal energy may depend on
deformations; and the equation of state contains
independent kinematic parameters [11].

An important example of non-Newtonian
rheology are materials whose behavior is modeled
by a non-Newtonian fluid, the viscosity of which
depends on the shear rate, for example: polymers
with fillers, gels, sols, macromolecular solutions
[12].

From the analysis of the technical literature, it
can be concluded that among the variety of non-
Newtonian fluids, representatives of three classes
are the most common: Bingham, generalized-
displaced, and graded fluids [13]. By the term
"generalized-displaced fluids" we mean fluids

whose viscosity depends on the rate of
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displacement in an arbitrary way [14]. In practice,
taking into account the rheological features of the
material is often reduced to an equation that
relates viscosity to velocity gradients [15].

In the works of the authors [16-17] it is shown
that when using various materials close in their
physical properties to non-Newtonian fluids, they
face a problem related to the dissipation of
mechanical energy. High dynamic viscosity causes
the dissipation of mechanical energy, which in
turn leads to overheating of the material even at
relatively low feed rates [18-20].

It is known that during the flow of non-
Newtonian fluids with high viscosity in a straight
channel, part of the energy is transformed into
dissipative heat [21-22]. The paper [23] shows
that the source of dissipative heat release is
included in the heat exchange equation as a
separate term. In [24-26], a method for
determining the amount of dissipation during the
flow of a viscoplastic fluid is proposed.

Results of the research and their
discussion

In this work, we consider the flow of a
generalized-displaced fluid. The movement of
fluid is carried out in the longitudinal and
longitudinal-transverse directions of the channel
of flat and rectangular shape. To calculate the
amount of energy dissipation of a generalized-
displaced fluid, it is necessary to first divide the
channel sections into corresponding sections with
different expressions for the flow rate, this was
discussed in detail in works [27-28].

The breakdown of flat and rectangular
channels is presented in the figure, the breakdown

elements are indicated by values S, s, - To
shorten the entries [29], different types of flow,
which are correlated with their corresponding

subareas of breakdowns, can be written in the
form of equations, which will be given below.

® N
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Fig. Split of the rectangular channel and linearization of the split
a - for cross-sectional flow; b - for longitudinal flow
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The breakdown of the rectangle of the cross
section of the straight channel and the calculation
of the integrals from the derivatives of the velocity
are mandatory stages of the calculations. For a
viscoplastic fluid only the part of the cross section
of the channel [24] that lies outside the solid core
contributes to the dissipation, but the generalized-
displaced fluid has fluidity over the entire cross
section of the channel [10]. If cubic polynomials
arise when performing integrations from the

+ 2 * y2
ovT __a %iy—y (L5
oy 28 \4p p dz
where E - dissipation on the intersection of flat
channel, J/m3.

a and f - constants, the values of which are

determined either experimentally or as a result of
piecewise linear approximation of the graph of the
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derivatives of the flow velocity for a viscoplastic
fluid, and the integration itself is performed
without difficulty, then when integrating the
derivatives of the velocity of a generalized-
displaced fluid, certain transformations must be
performed, which are given in this paper.

These transformations are listed in sequence
below. In the case of flat longitudinal flow, the
amount of dissipation applied to the cross section

of the channel has the following form:
+

(1)

u=a+ﬂau

(2)

function u= pu (I2), we considered this in detail in
works [10; 27].

If we substitute the second expression into the
first, taking into account the expression for
viscosity p, it turns out that the value E takes the

following form:
2
ov* (6U+ ]
oy

oy

(3)

It follows from the last expression that it is necessary to be able to calculate integrals of this type:

y-y dpP
p  dz

ool 552
where m - 2, 3.

The base of the exponent must always be
positive, because if y*< y < h, then the sum of values

in square brackets is greater than zero
2 ® Y2
;o | y-ydPl L a
2B | 4p° f dz 28
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With the help of this change of variables, the
integrals of degrees of derivatives can be
numerically calculated. First, the integral from the
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)

everywhere, except for y—y* where it equals

zero. If h <y <y, then the same conditions apply.
To calculate a power expression, we need to make
the following change of variable:

(5)
(6)

lower branch in the interval from --h to y* is
considered, while the following result has place:

_ " .
] do Xﬁ: )
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After substituting the limits of integration and performing some simple transformations, we get the

following final result:
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A similar calculation of the integral of the velocity derivative in the interval from y* to + h leads to

the following result:

m m+l m
jh‘dafﬁa)* S :ﬂjh S dw*+l-ijh‘ 2o do'=
v dP/dz 2 dP/dz*v\ 28 dP/dz 287v\ 2B

/2 S RS2 RS T A2 W PR
| dP/dz m+2 28) dP/dz 28 m+1\ 28

After substituting the integration boundaries and performing simple transformations, we get the

(9)

;
following final result:
m m+2
N 1 28 |(a® h-ydPY' «
J‘*dy = . 5+ —| —=| +
y oy m+2 dP/dz|| 43 B dz 2/ (10)

) . 12 m+1
N 1 a |[«a +h—y dP)}  a
m+1 dP/dz |\ 45> B dz 28|

Now we need to place (8) and (10) in (3), setting m=2 and m=3. As a result, for the corresponding

integrals, we obtain:
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Substitution (11)...(14) in (3) gives an expression for determining the energy dissipation of the
generalized-displaced flow. The compact notation of this expression is the following power form:

. 1 o 3\ 3 af o 2 p B
== W+ W )+ 2 Wit W) = S (WS —WSP) (15)
3dP/dz( i) 4dP/dz( o) 5dP/dz( v )
2 —_ % y2
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Next, the case of flat longitudinal-transverse flow is considered. When calculating the dissipation
energy of this type of flow, it is necessary to calculate the following integral:
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The first integral of the terms with the factor «
is reduced to the sum of the integrals that were
calculated for a flat longitudinal flow.

The second integral is impossible to calculate in
the obvious way. In addition, different derivatives
are calculated in different intervals due to the fact

that the values y; and y; are not equal to each

other.

If we consider the integral with factor g it
should be taken into account that the expressions
for the velocities Uz(y) and Ux(y) actually depend

ol ] relle) 5
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not on ¢ and g, but on a, £, and o, S«
correspondingly. Expression of these values
through «i fis shown in the work [10].

To perform the integration of the second
integral, we should first determine which of the

values y; and y; is bigger. Their specific ratio is

not important for further construction; therefore,
it is further assumed that yr<y,.Ina general

consideration, the following representations hold
for the indicated inequality, as well as for the
opposite one:

T;
!
I
T

(18)

(19)

Next, in the same way as it is done for a purely longitudinal plane flow, we should enter the variables

Wmi and fo according to the following rules:
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In both cases (18) and (19), it is necessary to be able to calculate integrals of this type in the

specified intervals:

_a . ’ _a,
J‘dy{+2—ﬂ2+wry} +{+ 25

Neglecting accuracy, the integrand can be
represented as a linear combination of powers of
expressions in square brackets. At the same time,
based on the results of calculations for a flat
longitudinal flow, it is possible to note that cubic
expressions must necessarily be present in this
linear combination. Further, bearing in mind that

r 2 232 3
aU;J [a,):] } Eaujj (
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r 2 2 3/2
ov; ov; , [ OvF
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where constants Ci and C;, i=1+4 somewhat

different from each other.
A more accurate and correct representation for
the left part of (22) and (23) should include six

5132
+fo}} .

3
'
j v

(21)

the coefficients of the linear combination are easy
to determine using the value of the complete
integrand expression (21) at the points y=+h,
y=Yy, , y=Y, , the integrand expression is
presented in the form:

N3 \2 \2
aux] +C3(6UZJ +C4(6ux] ’ (22)
oy oy oy

ov; ov; ovy (23)

( oy T“{ o I”‘{ o j

constants and in addition to the cubic, should
contain second- and first-degree derivatives of the
velocities. But in this case, the determination of
these constants requires a system of linear
equations of the sixth order, for which specific
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expressions for the constants cl.(i=l+6) are

extremely cumbersome. Bearing in mind that the
general case can always be solved numerically, the
case with four constants is considered next. For
concreteness, the case of expansion of expression
(22) is chosen, while it should be noted that case
(23) is no different from it. To increase the
accuracy, it is possible to separately solve the

systems of equations (22) and (23) twice for C,

ﬂgzﬂwwﬁ ﬁ;;wuwﬂ

3/2

% e ] vl -] ve -
+c{—2ﬂx +WM(h)} +c3{ 25 +Wﬂy(h)} +c{
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2 2192 3
%, +(_ _ v ol % W
{{— 2, +W ( h)} +{ 2. +W/ ( h)} } c{ 2, +W5 ( h)} +

and Cl.' and then take their average arithmetic
sum (c,.+cl.' )/2-

Representations (22) and (23) reduce the
problem of integration (18) and (19) to an already
solved problem about a flat longitudinal flow.

Finding the coefficients ci..cs ¢ Gy leads to the

following equations at the points y=+h:

(24)

2

a, .
e (1)

X

(25)

ax e ° _ az v 2 _ ax + ’
6 g (o) o ey o) - e )]

z

X

The following equations are obtained at points y =y’ and y=y':

Any pair of constants can easily be excluded
from the recent equations so that the entire
system of equations is reduced to a system of

[h]Z =8 [—h] =d;
[-h], =b; v;]=¢
[h]XEC; [y:}zf

In formulas (24)-(27), the notation of the
corresponding values is given in square brackets.
It should be emphasized that these notations
are effective only when solving the system of

PN L
(8 +¢°) =g +c8° +6a" +6,8%
- S U
(0% +d*)" =cb®+,d° +cp* +¢,d%;
f?=0+¢,f°+0+¢,f%

& =¢6°+0+G8 +0.

ot [

i 0] = ) g 0]

(26)

X

(27)

equations of the second order. To shorten the
record, it is useful to enter the following
abbreviations:

(28)

equations (24)-(27). The system of equations can
be rewritten using (28) in the following short
form:

(29)

Except for constants (~I3 and 54 for (~31 and 62 we get the following system of equations:

(a°+c*)" ~ate—c*f =cat(a—c)+c,e?(c - )

2 -~

(524—52)

b’ —d*f =cb’(b—€)+c,d*(d-f).

(30)

If we omit intermediate cumbersome calculations for 61 and 62, the following solutions hold:
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C:J]§+eﬁ”_a%_cﬁla1a_fy{p?+aq”_5@_af{ch_f) G
' a’d’(a-¢)(d-f)-b%*(b-€)(c-f) ’
i 2[(52“52)3/2—ﬁzé—azf}éz(é—é)—[(éz+62)3/2—é2é—62f]52(5—é) 32)
’ a°d*(a-¢)(d - f)-b*c*(b—¢)(c- )
Constants C; and ¢, can be found from the relations of the following form:
¢, =€(1-¢), ¢, =f(1-¢,). (33)

Next, it is necessary to determine the values
€, ..C, for expanding (24) and (25). The given

system of equations is similar to (29) and takes the
following form in notation (28):
~2 =2\¥?2 i3 ara ~
(a®+¢%) =ga’+ec’ +ca+
~  o\¥2 s e~
(0% +d?)"" =cb® +c,d° + b +c,d; (34)
fP=0+cf®+0+¢f;
& =¢e°+0+C€+0.
Next, it is necessary to carry out the same procedure as when solving the system of equations (29),
that is, exclude ¢; and ¢, . Omitting all intermediate calculations, the finished result looks like this:

K§+eﬁﬂa§_&ﬂa@tfﬁ_ﬂw+&ﬁ%ﬁ§_ﬁﬂqe_P)

/_ (35)
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6'=[(b +d ) —brf —df }a(? —(i )—L(a~+c ) — &6 ~—c }b(b " ) G6)
? ad(a® -e*)(d*- f*)-be(b* -e*)(c* - 1)
¢ =6*(1-¢,); ¢, =f*(1-¢,) (37)

The values g, ¢, &, b, d, f in(31), (32), (33), (35), (36) have expressions through the derivatives
of the velocity components according to the following rules:

~ . - aU+ . ~ aUZ_ %\, d : * * 38
a= z h 4 Cc= X (h)’ e= yx ’ condition yXSyZ’ ( )
() e=Tey E=7(Y)
~ Ov, .+ Ou, . ¢ Ov
b = z —h ) d = X —h )] f = X y:
V() d=C(on)s T-2(y))
If the opposite inequality is fulfilled, then the following should be understood by € and f.
+ g 81)7 % * *
&= aUz (y;), f = X (yz), condition yz < yX' (39)
oy oy

where &, ¢, b, d - have the same form as in (38).

In the future, taking into account the equations
obtained above, it should be taken into account
that the algorithm for calculating the dissipation
energy for a flat longitudinal-transverse flow is
based on the use of the algorithm for calculating
the dissipation energy for a flat longitudinal flow.

Next, the longitudinal-transverse flow in a
rectangular channel is considered. Let's turn to the
diagram of the breakdown of the cross section of
the channel for the longitudinal-transverse flow

(see fig.), which has already been discussed in
detail in works [10, 24, 29].

As can be seen from the figure, the longitudinal
and transverse currents are constructed in such a
way that in each element of the rectangular
partition there is a longitudinal current with a
derivative component, which includes a set of
components duv, /dx, , where i,k=x,y and a

transverse current with a derivative component
with a set of components Guf/ax , where
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i,k =x,y. That is, all elements of the breakdown

can be divided into two subsets. In one subset,
each partition element corresponds to a pair of
velocity derivatives along one coordinate, and in

% and M;
oy oy

9V, and % ;
oy oy

the other subset, each partition element
corresponds to a pair of derivatives along different
coordinates.

Given the above, the following pairs of
derivatives arise for the first subset:

d %; ov, and 6&
OX OX OX

N
aUz an
OX

For the second subset, pairs of derivatives will include derivatives in different coordinates in the

following pairs:
0V, and 9 ;
oy OX

ov, and % and so on.
oy OX

For all these combinations of derivatives, it is necessary to calculate integrals of the following form:

_Udydx OHﬂ\/(%USJ +(%}Ej
”dydx a+f (80;

=) ov; ’
+ —_—
OX,

OX,

For the integral (40), the calculation can be
carried out in the same way as for the plane
longitudinal-transverse flow, thatis, by presenting
the fractional degree of the sum of squares of the
derivatives through the sum of whole degrees. In
this case, the following values y =+h, y: JX=1a,Y;
,y==h,y,, x="=a, x; should be selected as location

points.

Unlike the cases of longitudinal and
longitudinal-transverse flow in the case under
consideration, the integration is carried out along
—a Yy (% N
I dx _[ (aUZJ dy
" o)

-h

where m - 2, 3.
The result of the first integration looks like this:

o fa (@ y-yer)|
m+2 dP/dz| 25 | 4F° p

2B |a [
dp/dz| 28 | 4p°

where Y (X) - given function from X.

If we use the substitution (20), then the terms
of the last expression, which includes the function
y~(x) acquire a simple form for integration along

the x coordinate only if y~ (X) is a linear function.

If the lines of the boundaries of the breakdown

s
OX,

I

ov’

m+2
LS A S N
B m+2 dP/dz| 25 | 4f°

(40)

2 L\2
61)]? .
+ I )
OX,
2 N2
60;
+ —_—
OX,

one of the coordinates to the border of the
corresponding contour of the rectangle of the
channel cross section into elements, and along the
other coordinate within the specified limits. These
limits are determined by the coordinates of the
point of intersection of the contours of the
breakdown limits and values +a, +h (see figure).
As an example, below we consider the
calculation of the integral for the degree of the
derivative dv,/dy of the following form:

k =1l (41)

OX,

(42)

+2

oyl (28 [e (o vyl
5 yay CldPjdz (28 (48 B Az

(43)

m+1
ey ) 1
p dz m+1|

strongly deviate from straight lines, then the
corresponding integrals can only be calculated
numerically.

Conclusions

The proposed method allows to calculate the
dissipation energy in the longitudinal and
longitudinal-transverse directions of the flow of
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the generalized-displaced fluid in the flat and
rectangular channels of the technological
equipment. The obtained equations make it
possible to determine the temperatures of the
working material in the channel and the coolant
along the length of the flat and rectangular
channels for various cases of heat exchange, the
heat transfer coefficients of the flow of a
generalized displaced fluid with an arbitrary
distribution of velocity at the channel boundaries.

References

[1] Berk, Z. (2009). Food Process Engineering and
Technology.  lIsrael.  Elsevier  Department  of
Biotechnology and Food Engineering Israel Institute of
Technology.

[2] Harlamov S. (2013). [Hydrodynamics and heat exchange:
new trends and perspective modeling of internal flows].
LAP LAMBERT Academic Publishing. (in Russian).

[3] Gale, M. (2009). Mixing in Single Screw Extrusion. USA:
Smithers Rapra Press.

[4] Ulyev, L. M. (2016). [Laminar flow in coaxial conical
channels). Kharkiv. Ukraine: NTU "KhPI". (in Ukraine).

[5] Ferziger, ]. Peric M. (2002) Computational Methods for
Fluid Dynamics. Berlin, Germany, Springer. (in English).

[6] Anandha, Rao M. (2014). Rheology of Fluid, Semisolid,
and Solid Foods: Principles and Applications. New York,
USA: Imprint: Springer.

[7] Tanner, R. L. (2002). Engineering Rheology. New York,
USA: Oxford University Press.

[8] Yahno, O. M. & Zhelyak, V. I. (1995). Hydraulics of non-
Newtonian fluids. Educational manual. Kiev: Vischa
shkola (in Ukrainian).

[9] Haldenwang, R, Slatter, P.T. and Chhabra, R.P. (2010)
An experimental study of non-Newtonian fluid flow in
rectangular flumes in laminar, transition and turbulent
flow regimes. Journal of the South African Institution of
Civil Engineering, 52(1), 11-19.

[10] Tovazhnyansky, L. L., Biletsky, E.V., Tolchinsky Yu. A.
(2013) [Modeling of flows of non-Newtonian fluids in
channels of basic geometry]. Kharkiv. Ukraine: NTU
"KhPI". (in Ukraine).

[11] Astarita, Dzh., Marruchi, Dzh. (1978). [Fundamentals of
the hydromechanics of non-Newtonian fluids]. Moscow:
Mir (in Russian).

[12] Morrison, F.A, (2001) Understanding Rheology, New
York, USA: Oxford University Press.

[13] Cantelli, A. (2009). [Uniform Flow of Modified Bingham
Fluids in Narrow Cross Sections]. Journal of Hydraulic
Engineering, 135(8), 640-50.
https://doi.org/10.1061/7900.0000092

[14] Baptista, A, Alves, M.A,, Coelho, P.M. (2014). [Heat
transfer in fully developed laminar flow of power law
fluids]. Journal of Heat Transfer, 136(4), 1-8.
https://doi.org/110.1115/1.4025662

[15] Vlachopoulos, ]. Fundamentals of Fluid Mechanics.,
Dundas, Canada: Polydynamics inc.

[16] Golovanchikov, A. B., Shagarova, A. A. (2015) [Modeling
the flow of a viscoplastic reaction mass in a screw
reactor with a low viscosity wall layer]. Izvestiya vuzov.
Khimiya i khimicheskaya tekhnologiya. 58(12), 69-72.
https://doi.org/10.1134/S1070427209040405

[17] Ternik P., Marn J., Zuni Z., (2006). Non-Newtonian fluid
flow through a planar symmetric expansion: Shear-
thickening fluids, /. Non-Newtonian Fluid Mech., 135,
136-148

This calculation algorithm can be used to calculate
the dissipation energy of a power-law fluid.
Knowledge of the numerical indicators of the
energy of dissipative heat generation must be
considered when calculating the optimal
parameters of technological equipment. This leads
to a new level of quality in the design of
appropriate technological equipment, which
allows to reduce energy consumption and
material consumption.

[18] Letelier, M. F., Hinojosa, C. B., Siginer, D. A. (2017).
Analytical solution of the Graetz problem for non-linear
viscoelastic fluids in tubes of arbitrary cross-section.
International Journal of Thermal Sciences ,111,369-378.

[19] Shahbani-Zahiri, A. (2018) "Numerical simulation of
inertial flow of heated and cooled viscoelastic fluids
inside a planar sudden expansion channel: investigation
of stresses effects on the total dissipation.”" Meccanica
53(11-12), 2897-2920.

[20] Frank-Kamenetskii, D.A. (2015) Diffusion and Heat
Exchange in Chemical Kinetics. Princeton. USA:
Princeton University Press.

[21] Mitsoulis, E., Tsamopoulos, ], (2017). Numerical
simulations of complex yield-stress fluid flows.
Rheologica Acta, 56. 231-258.

[22] Toth, G. Bata, A, Belina, K. (2018). Determination of
polymer melts flow-activation energy a function of wide
range shear rate. IOP Conf. Series: Journal of Physics.
1045.

[23] Petrenko, E. Biletsky, E., Ryshchenko, I. Semeniuk, D.
(2021). Equation of heat exchange during the flow of
non-newtonian fluids in channels of technological
equipment. Journal of Chemistry and Technologies.
29(2), 254-264. https://doi.org/10.15421/jchemtech.v29i2
229829

[24] Biletsky, E. Semeniuk, D. (2012). Method of determining
of dissipation energy during the movement of Bingham
fluid. Journal of technical university of Moldova and
moldovian engineering association. Meridian engineresc.
4,40-44.

[25] Biletsky, E. Petrenko, E., Semeniuk, D. (2016). Three-
dimensional model of non-Newtonian fluid flow in the
rectangular channel. Ukrainian Food Journal. 5(3), 550-
560. https://doi.org/10.24263/2304-974X-2016-5-3-14

[26] Petrenko, E., Biletsky, E., Semeniuk, D. (2019). Modeling
of the viscoplastic flow of a bingam fluid with transverse
circulation in a rectangular channel of a worm machine.
Journal of Chemistry and Technologies. 27(2), 550-560.
https://doi.org/10.15421/081921

[27] Petrenko, E. Biletsky, E., Semeniuk, D. (2020).
Determination of heat transfer coefficients during the
flow of non-Newtonian fluids in pipes and channels of
chemical process equipment. Journal of Chemistry and

Technologies. 28(1), 88-99.
https://doi.org/10.15421/082010
[28] Petrenko, E. Biletsky, E., Semeniuk, D. (2020).

Simulation of the flow of viscous-plastic barotropic
compressible material in channels of complex
geometry. Journal of Chemistry and Technologies. 30(2),
275-284. :https://doi.org/10.15421/.255960

[29] Biletsky, E. Petrenko, E., Semeniuk, D. (2014).
Theoretical aspects of non-newtonian fluids flow
simulation in food technologies. Ukrainian Food Journal.
3(2), 271-280.



https://www.twirpx.com/file/1181564/
https://doi.org/10.1061/7900.0000092
http://dx.doi.org/10.1115/1.4025662
https://doi.org/10.1134/S1070427209040405
https://doi.org/10.15421/jchemtech.v29i2
https://doi.org/10.24263/2304-974X-2016-5-3-14
https://doi.org/10.15421/081921
https://doi.org/10.15421/.255960

