
376 
 Journal of Chemistry and Technologies, 2023, 31(2), 376-384  

 

 

Journal of Chemistry and Technologies 
 

pISSN 2663-2934 (Print), ISSN 2663-2942 (Online).  
 

 journal homepage: http://chemistry.dnu.dp.ua 

 

UDC 643.33:547.128 

METHOD FOR CALCULATING THE DISSIPATION ENERGY DURING THE FLOW OF 
GENERALIZED-DISPLACED FLUID IN THE CHANNELS OF TECHNOLOGICAL EQUIPMENT 

Eduard V. Biletsky1, Elena V. Petrenko*2, Dmitrij Р. Semeniuk2 
1 National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, 61002, Ukraine 

2 State Biotechnological University, 44 Alchevskih str., Kharkiv, 61002, Ukraine 

Received 11 April 2023; accepted 17 Junе 2023; available online 25 July 2023 
 

Abstract  
This paper considers the problem of determining the dissipation energy during the flow of a generalized-displaced 
fluid in the channels of technological equipment. It is known that during the flow of highly viscous non-Newtonian 
fluids, the problem of heating this substance arises. This is primarily due to the fact that during the transportation of 
the material, the dissipation mechanism takes place, which leads to overheating of the material. In its turn, this affects 
the changes in the physical and chemical properties of the material and the technical and economic indicators of the 
corresponding equipment. We propose a method for calculating the dissipation energy during the flow of a 
generalized-displaced fluid in the channels of screw machines. To solve this problem, we used the superposition 
method to construct fields of larger dimensions from fields of smaller dimensions with different boundary conditions. 
A channel of flat and rectangular shape is considered. Fluid movement is carried out in the longitudinal and 
longitudinal-transverse directions of the channel. To calculate the amount of energy dissipation of a generalized-
displaced fluid, it is necessary to first divide the channel sections into sections with different expressions for the flow 
rate. At the same time, each of the subareas consists of two curvilinear triangles and one rectangle. The mandatory 
steps of the calculations are the breakdown of the rectangle of the cross section of the straight channel, and the 
calculation of the integrals from the derivatives of the velocity. The proposed method allows to calculate the energy 
of dissipative heat generation when calculating the optimal parameters of technological equipment. 
Keywords: fluid; generalized-displaced; dissipation; flow; channel; calculation. 
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Анотація 
У даній роботі розглянуто проблему визначення енергії дисипації під час течії узагальнено-зрушеної рідини 
у канал технологічного обладнання. Пропонується метод обчислення енергії дисипації під час течії 
узагальнено-зрушеної рідини в каналах шнекових машин. Для розв’язання даної задачі застосовано метод 
суперпозиції. Розглядається канал пласкої та прямокутної форми. Рух рідини здійснюється у поздовжньо та 
поздовжньо-поперечних напрямках каналу. Для обчислення величини енергії дисипації попередньо 
необхідно провести розбивку перетинів каналів на відповідні ділянки з різними виразами для швидкості 
течії. Розбивка прямокутника перетину прямого каналу та обчислення інтегралів від похідних швидкості є 
обов'язковими етапами розрахунків. Запропонований метод дозволяє обчислити енергію дисипативного 
тепловиділення в процесі розрахунку оптимальних параметрів технологічного обладнання.  
Ключові слова: рідина; узагальнено-зрушена; дисипація; течія; канал; обчислення. 
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Introduction 
Thermal processes are the most common 

processes in chemical and food technologies [1–3]. 
Today, many scientific works describe the heat 
transfer of Newtonian fluids [4–5]. But there are 
quite a lot of chemical compounds (polymers, 
plastics, construction mixtures) and food products 
(chocolate, flour, confectionery) that belong to 
multicomponent systems that have a relatively 
high viscosity and a non-linear nature of the flow, 
these are the so-called non-Newtonian fluids [6–
7]. 

To assess the structural and mechanical 
properties, it is necessary to know the type of 
structure, the dependence of stress on the 
displacement rate, as well as the amount of 
dissipation [8]. 

It is known that during its motion, a non-
Newtonian fluid loses part of its energy, which 
turns into dissipative heat [9]. Knowledge of the 
amount of dissipation makes it possible to select 
technological equipment with the best power 
reserve, thereby reducing production costs [10]. 

Analysis of recent research and publications. 
The class of non-Newtonian fluids is very broad. It 
includes various media that have a certain degree 
of elasticity, their internal energy may depend on 
deformations; and the equation of state contains 
independent kinematic parameters [11]. 

An important example of non-Newtonian 
rheology are materials whose behavior is modeled 
by a non-Newtonian fluid, the viscosity of which 
depends on the shear rate, for example: polymers 
with fillers, gels, sols, macromolecular solutions 
[12]. 

From the analysis of the technical literature, it 
can be concluded that among the variety of non-
Newtonian fluids, representatives of three classes 
are the most common: Bingham, generalized-
displaced, and graded fluids [13]. By the term 
"generalized-displaced fluids" we mean fluids 
whose viscosity depends on the rate of 

displacement in an arbitrary way [14]. In practice, 
taking into account the rheological features of the 
material is often reduced to an equation that 
relates viscosity to velocity gradients [15]. 

In the works of the authors [16–17] it is shown 
that when using various materials close in their 
physical properties to non-Newtonian fluids, they 
face a problem related to the dissipation of 
mechanical energy. High dynamic viscosity causes 
the dissipation of mechanical energy, which in 
turn leads to overheating of the material even at 
relatively low feed rates [18–20]. 

It is known that during the flow of non-
Newtonian fluids with high viscosity in a straight 
channel, part of the energy is transformed into 
dissipative heat [21–22]. The paper [23] shows 
that the source of dissipative heat release is 
included in the heat exchange equation as a 
separate term. In [24–26], a method for 
determining the amount of dissipation during the 
flow of a viscoplastic fluid is proposed. 

 

Results of the research and their 
discussion 

In this work, we consider the flow of a 
generalized-displaced fluid. The movement of 
fluid is carried out in the longitudinal and 
longitudinal-transverse directions of the channel 
of flat and rectangular shape. To calculate the 
amount of energy dissipation of a generalized-
displaced fluid, it is necessary to first divide the 
channel sections into corresponding sections with 
different expressions for the flow rate, this was 
discussed in detail in works [27–28]. 

The breakdown of flat and rectangular 
channels is presented in the figure, the breakdown 

elements are indicated by values ,yS  
xS . To 

shorten the entries [29], different types of flow, 
which are correlated with their corresponding 
subareas of breakdowns, can be written in the 
form of equations, which will be given below. 

 
   a        b  

Fig. Split of the rectangular channel and linearization of the split 
a – for cross-sectional flow; b – for longitudinal flow 
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The breakdown of the rectangle of the cross 
section of the straight channel and the calculation 
of the integrals from the derivatives of the velocity 
are mandatory stages of the calculations. For a 
viscoplastic fluid only the part of the cross section 
of the channel [24] that lies outside the solid core 
contributes to the dissipation, but the generalized-
displaced fluid has fluidity over the entire cross 
section of the channel [10]. If cubic polynomials 
arise when performing integrations from the 

derivatives of the flow velocity for a viscoplastic 
fluid, and the integration itself is performed 
without difficulty, then when integrating the 
derivatives of the velocity of a generalized-
displaced fluid, certain transformations must be 
performed, which are given in this paper. 

These transformations are listed in sequence 
below. In the case of flat longitudinal flow, the 
amount of dissipation applied to the cross section 
of the channel has the following form: 
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where �̇�– dissipation on the intersection of flat 
channel, J/m3. 

α and β – constants, the values of which are 
determined either experimentally or as a result of 
piecewise linear approximation of the graph of the 

function µ= µ (І2), we considered this in detail in 
works [10; 27]. 

If we substitute the second expression into the 
first, taking into account the expression for 
viscosity µ, it turns out that the value E  takes the 
following form: 
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It follows from the last expression that it is necessary to be able to calculate integrals of this type: 
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where m – 2, 3. 
The base of the exponent must always be 

positive, because if y* y  h, then the sum of values 
in square brackets is greater than zero 

everywhere, except for  yy  where it equals 

zero. If h  y y*, then the same conditions apply. 
To calculate a power expression, we need to make 
the following change of variable: 
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With the help of this change of variables, the 
integrals of degrees of derivatives can be 
numerically calculated. First, the integral from the 

lower branch in the interval from --h to y* is 
considered, while the following result has place: 
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After substituting the limits of integration and performing some simple transformations, we get the 
following final result: 
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A similar calculation of the integral of the velocity derivative in the interval from y  to h  leads to 

the following result: 
1

2 1

2 2 2
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(9) 

After substituting the integration boundaries and performing simple transformations, we get the 
following final result: 
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Now we need to place (8) and (10) in (3), setting m=2 and m=3. As a result, for the corresponding 
integrals, we obtain: 
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Substitution (11)...(14) in (3) gives an expression for determining the energy dissipation of the 
generalized-displaced flow. The compact notation of this expression is the following power form: 
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Next, the case of flat longitudinal-transverse flow is considered. When calculating the dissipation 
energy of this type of flow, it is necessary to calculate the following integral:
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The first integral of the terms with the factor  
is reduced to the sum of the integrals that were 
calculated for a flat longitudinal flow.  

The second integral is impossible to calculate in 
the obvious way. In addition, different derivatives 
are calculated in different intervals due to the fact 

that the values 
zy  and 

xy  are not equal to each 

other. 
If we consider the integral with factor  it 

should be taken into account that the expressions 
for the velocities  yz  and  yx  actually depend 

not on  and , but on z, z and x, x 
correspondingly. Expression of these values 
through  і  is shown in the work [10]. 

To perform the integration of the second 
integral, we should first determine which of the 

values 
zy  and 

xy  is bigger. Their specific ratio is 

not important for further construction; therefore, 
it is further assumed that   zx yy . In a general 

consideration, the following representations hold 
for the indicated inequality, as well as for the 
opposite one: 
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Next, in the same way as it is done for a purely longitudinal plane flow, we should enter the variables 

yW   and 
xW 


 according to the following rules: 
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In both cases (18) and (19), it is necessary to be able to calculate integrals of this type in the 
specified intervals: 

3 2
22

.
2 2

xz
y x

z x

dy W W


 

 



    
     

     


      (21) 

Neglecting accuracy, the integrand can be 
represented as a linear combination of powers of 
expressions in square brackets. At the same time, 
based on the results of calculations for a flat 
longitudinal flow, it is possible to note that cubic 
expressions must necessarily be present in this 
linear combination. Further, bearing in mind that 

the coefficients of the linear combination are easy 
to determine using the value of the complete 
integrand expression (21) at the points y h  , 

zy y , 
xy y , the integrand expression is 

presented in the form: 

3 2
2 2 3 3 2 2

1 2 3 4 ,z x z x z xc c c c
y y y y y y

                           
                

                  

  (22) 

 
3 2

2 2 3 3 2 2

1 2 3 4 .z x z x z xc c c c
y y y y y y

                           
                   

                    

(23) 

where constants іc  and іc , 41і  somewhat 

different from each other.  
A more accurate and correct representation for 

the left part of (22) and (23) should include six 

constants and in addition to the cubic, should 
contain second- and first-degree derivatives of the 
velocities. But in this case, the determination of 
these constants requires a system of linear 
equations of the sixth order, for which specific 
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expressions for the constants  1 6іс і    are 

extremely cumbersome. Bearing in mind that the 
general case can always be solved numerically, the 
case with four constants is considered next. For 
concreteness, the case of expansion of expression 
(22) is chosen, while it should be noted that case 
(23) is no different from it. To increase the 
accuracy, it is possible to separately solve the 

systems of equations (22) and (23) twice for іc  

and іc , and then take their average arithmetic 

sum   / 2і іс с . 

Representations (22) and (23) reduce the 
problem of integration (18) and (19) to an already 
solved problem about a flat longitudinal flow. 

Finding the coefficients c1….с4
1с …

4с  leads to the 

following equations at the points y h  : 
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The following equations are obtained at points 
zy y  and 

xy y : 

     
3 3 2

2 4 .
2 2 2

x x x
x z x z x z

x x x

W y c W y c W y
  

  

     

  

     
         

     

;   (26) 

     
3 3 2

1 4 .
2 2 2

z z z
y x y x y x

z z z

W y c W y c W y
  

  

          
         

     

   (27) 

Any pair of constants can easily be excluded 
from the recent equations so that the entire 
system of equations is reduced to a system of 

equations of the second order. To shorten the 
record, it is useful to enter the following 
abbreviations: 

         ;
z

h a     ;h d   

  ;
z

h b     ;xy e   
       (28) 

         ;
x

h c   .zy f   
 

In formulas (24)–(27), the notation of the 
corresponding values is given in square brackets. 

It should be emphasized that these notations 
are effective only when solving the system of 

equations (24)–(27). The system of equations can 
be rewritten using (28) in the following short 
form: 

                     
3 2

2 2 3 3 2 2

1 2 3 4 ;a c c a c c c a c c      

 
3 2

2 2 3 3 2 2

1 2 3 4 ;b d c b c d c b c d           (29)
 

                    3 3 2

2 40 0 ;f c f c f     

                    3 3 2

1 30 0.e c e c e     

Except for constants 3c  and 4c  for 1c  and 2c  we get the following system of equations: 

                            
3 2

2 2 2 2 2 2

1 2a c a e c f c a a c c c c f        

     
3 2

2 2 2 2 2 2

1 2 .b d b e d f c b b e c d d f           (30) 

If we omit intermediate cumbersome calculations for 1c  and 2 ,c  the following solutions hold: 
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3 23 2
2 2 2 2 2 2 2 2 2 2

1 2 2 2 2
;

a c a e c f d d f b d b e d f c c f

c
a d a e d f b c b e c f

          
      

        

(31) 

       

     

3 2 3 2
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
.

b d b e d f a a e a c a e c f b b e

c
a d a e d f b c b e c f

           
     

        

(32) 

Constants 3c  and 
4c  can be found from the relations of the following form: 

 3 11c e c  ,   4 21c f c  .      (33) 

Next, it is necessary to determine the values 

1 4...c c   for expanding (24) and (25). The given 

system of equations is similar to (29) and takes the 
following form in notation (28): 

 
3 2

2 2 3 3

1 2 3 4 ;a c c a c c c a c c         

 
3 2

2 2 3 3

1 2 3 4 ;b d c b c d c b c d               (34) 

             3 3

2 40 0 ;f c f c f      

             3 3

1 30 0.e c e c e     . 

Next, it is necessary to carry out the same procedure as when solving the system of equations (29), 
that is, exclude 

3c  and 
4c . Omitting all intermediate calculations, the finished result looks like this: 

       

     

3 23 2
2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2 2
;

a c ae cf d d f b d be df c c f

c
ad a e d f bc b e c f

          
       

    

  (35) 

       

     

3 2 3 2
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2 2 2 2 2 2 2 2 2
;

b d be df a a e a c ae cf b b e

c
ad a e d f bc b e c f

           
      

        

(36) 

 2

3 11c e c   ;   2

4 21c f c   .      (37) 

The values , , , , ,a c e b d f  in (31), (32), (33), (35), (36) have expressions through the derivatives 

of the velocity components according to the following rules: 
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  condition ,x zy y    (38) 

 zb h
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;   xd h

y


 


;   x
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If the opposite inequality is fulfilled, then the following should be understood by e  and f : 

 z
xe y

y

 





;  ;x
zf y

y

 





 condition .z xy y       (39) 

where , , ,a c b d  – have the same form as in (38). 

In the future, taking into account the equations 
obtained above, it should be taken into account 
that the algorithm for calculating the dissipation 
energy for a flat longitudinal-transverse flow is 
based on the use of the algorithm for calculating 
the dissipation energy for a flat longitudinal flow. 

Next, the longitudinal-transverse flow in a 
rectangular channel is considered. Let's turn to the 
diagram of the breakdown of the cross section of 
the channel for the longitudinal-transverse flow 

(see fig.), which has already been discussed in 
detail in works [10, 24, 29].  

As can be seen from the figure, the longitudinal 
and transverse currents are constructed in such a 
way that in each element of the rectangular 
partition there is a longitudinal current with a 
derivative component, which includes a set of 
components 

zi kx  , where , ,і k x y  and a 

transverse current with a derivative component 

with a set of components 
і kx  , where 
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, ,і k x y . That is, all elements of the breakdown 

can be divided into two subsets. In one subset, 
each partition element corresponds to a pair of 
velocity derivatives along one coordinate, and in 

the other subset, each partition element 
corresponds to a pair of derivatives along different 
coordinates.  

Given the above, the following pairs of 
derivatives arise for the first subset: 

z

y

 


 and x

y

 


; z

y

 


 and x

y

 


; z

x

 


 and y

x

 


; z

x

 


 and y

x

 


. 

For the second subset, pairs of derivatives will include derivatives in different coordinates in the 
following pairs: 

z

y

 


 and y

x

 


;  z

y

 

  
and y

x

 


 and so on. 

For all these combinations of derivatives, it is necessary to calculate integrals of the following form: 
2 22 2

j jі i

k k k k

dydx
x x x x

  
 

  
                                             


;    (40) 

2 22 2

j jі i

k l k l

dydx
x x x x

  
 

  
                                             


. k l   (41) 

For the integral (40), the calculation can be 
carried out in the same way as for the plane 
longitudinal-transverse flow, that is, by presenting 
the fractional degree of the sum of squares of the 
derivatives through the sum of whole degrees. In 

this case, the following values , zy h y  , , zx a y 

, , xy h y  , , yx a x   should be selected as location 

points.  
Unlike the cases of longitudinal and 

longitudinal-transverse flow in the case under 
consideration, the integration is carried out along 

one of the coordinates to the border of the 
corresponding contour of the rectangle of the 
channel cross section into elements, and along the 
other coordinate within the specified limits. These 
limits are determined by the coordinates of the 
point of intersection of the contours of the 
breakdown limits and values ,a h   (see figure).  

As an example, below we consider the 
calculation of the integral for the degree of the 
derivative 

z y   of the following form: 
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where m – 2, 3. 
The result of the first integration looks like this: 
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where  y x
 – given function from x .  

If we use the substitution (20), then the terms 
of the last expression, which includes the function 

 y x  acquire a simple form for integration along 

the x coordinate only if  y x  is a linear function. 

If the lines of the boundaries of the breakdown 

strongly deviate from straight lines, then the 
corresponding integrals can only be calculated 
numerically. 

 

Conclusions 
The proposed method allows to calculate the 

dissipation energy in the longitudinal and 
longitudinal-transverse directions of the flow of 
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the generalized-displaced fluid in the flat and 
rectangular channels of the technological 
equipment. The obtained equations make it 
possible to determine the temperatures of the 
working material in the channel and the coolant 
along the length of the flat and rectangular 
channels for various cases of heat exchange, the 
heat transfer coefficients of the flow of a 
generalized displaced fluid with an arbitrary 
distribution of velocity at the channel boundaries. 

This calculation algorithm can be used to calculate 
the dissipation energy of a power-law fluid. 
Knowledge of the numerical indicators of the 
energy of dissipative heat generation must be 
considered when calculating the optimal 
parameters of technological equipment. This leads 
to a new level of quality in the design of 
appropriate technological equipment, which 
allows to reduce energy consumption and 
material consumption. 
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