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Abstract 
The band structure, density of state, and optical properties of TiO2 rutile were studied using first principles 
calculations within the framework of density functional theory using the generalized gradient approximation (GGA-
RPBE) at both zero and high pressures. we used the Birch-Murnaghan equation of state calculate of volume and 
bulk modulus by approximation that we mentioned above and our results were compared with previous theoretical 
and experimental data, we noticed a good agreement between the results. The band gap of 2.098 eV (GGA) remains 
unchanged when the pressure is increased from 0 to 10 GPa, indicating an underestimation. The reduction in 
volume and lattice constants with increasing pressure is responsible for the decrease in band gap. There is a good 
agreement between the experimental results and the dielectric constant ε (ω) and refractive index. The 
photocatalytic activity of TiO2 is found to decrease with increasing pressure based on the absorption spectrum. The 
energy loss spectra show new peaks as a result of the pressure effect on the energy loss function. From our results, 
we noticed the effect of pressure within the range (0–60 GPa) on each of the structural, electronic and optical 
properties, and there is also good agreement between the current results and previous results. 
Keywords:first principle; Ultrasoft pseudopotential; Density of states; Refractive index; Hydrostaticpressure. 
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Анотація 
Електронні константи, оптичні властивості та показники пружності рутилу TiO2 досліджено з 
використанням першого принципу. Ефекти обмінної кореляції з використанням RPBE описано в термінах 
узагальненого градієнтного наближення [GGA]. Виміряні об'єм та об'ємний модуль добре узгоджуються з 
попередніми експериментальними і теоретичними результатами. Розраховано ширину забороненої зони 
(2.098 еВ) з урахуванням більшої інтенсивності станів і розширенними енергетичними зонами навколо 
рівнів Фермі. Діелектричну проникність визначено з урахуванням електронної зонної структури і, з огляду 
на її важливість, використано для обчислення решти оптичних властивостей, таких як функція втрат 
енергії, показник заломлення, поглинання і відбивання. Вплив гідростатичного тиску (0–60 ГПа) показано 
на змінах властивостей. Результати нашого дослідження добре узгоджуються з відомими сучасними 
експериментальними і теоретичними результатами. 
Ключові слова: перший принцип; надм'який псевдопотенціал; густина станів; показник заломлення; 
гідростатичний тиск. 
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Introduction 
Titanium dioxide (TiO2) is a complex 

transition metal oxide that is readily available 
and well described experimentally, with a wide 
range of applications [1]. TiO2 has a wide range 
of industrial applications, including 
photoelectrodes [2], electronics [3], gas 
sensing, painting [4], and dye-sensitized solar 
cells [5]. Hence, the utilization of TiO2 in 
photocatalytic processes under visible light is 
significantly constrained. In order to enhance 
the range of wavelengths that TiO2 can respond 
to and its overall photo catalytic efficiency 
across the entire solar spectrum, extensive 
endeavors have been undertaken [6–8]. 
Although many theoretical calculations of the 
electronic properties of rutile TiO2 have been 
reported in the literature [9–14], there are 
significant differences between these 
previously calculated values and the 
corresponding experimental ones. The 
theoretical direct band gaps range from 1.67 to 
3.25 eV (for the local density approximation, 
LDA), 1.69 to 4.45 eV (for the generalized 
gradient approximation, GGA), and more than 
3.4 to 13.05 eV (for the Hartree-Fock 
approximation, HF). We do not know of any 
previous reports of a calculated, fundamental, 
indirect band gap for rutile TiO2. Here, we 
report on studies of the electronic and 
structural band gap of rutile titanium dioxide 
at various hydrostatic pressure levels using a 
first-principles plane-wave ultra soft pseudo-
potential method. Results and a discussion are 
presented in the section that follows, along 
with the specifics of the computational 
approach. The conclusion of this work is 
presented in the last section. 

 

Theoretical Method 
The present calculations are based on the 

implementation of the plane wave pseudo potential 
of density functional theory [15; 16] using the 
computational program CASTEP [17], which is 
supported by density functional theory and 
molecular dynamics theory. RPBE was first 
proposed in 1998 with the goal of improving in the 
chemical absorption of energy of atoms and 
molecules [18]. Therefore, we adopted GGA with 
the RPBE as the exchange correlation function [19]. 
The electronic arrangement of O and Ti 
are 2𝑠22𝑝4and 3𝑠23𝑝63𝑑24𝑠2,respectively. The 
valence of electrons O and Ti are 4 and 6 
respectively. Ultrasoft Pseudo potential (USP) has 
been used to define the plane wave base and to 
perform mathematical operations to reduce the 
cutoff energy with minimal contribution from the 
core region. The kinetic energy cutoff (400eV) was 
used to extend the smooth portion of the wave 
function in the plane wave. A 2×2×2 k-point grid is 
used to integrate the Brillion region for rutile TiO2. 
The Broyden-Fletcher-Goldfarb-Shenno (BFGS) 
miniature method was used to improve the 
geometry [20]. The convergence of displacement 
was set to less than 0.001 𝐴°, and the energy 
difference was set to less than 1 × 10−6 eV / atom. 

 

Results and discussion 
Electronic properties. The BFGS algorithm was 

used to perform the geometry optimization. For the 
quadrangular rutile TiO2 compound at the 
experimental lattice constant a = b= 4.716818 𝐴° 
and c = 2.96673𝐴°.These equilibrium lattice 
constants are 1 % higher as compared to 
experimental values [21].  The equilibrium lattice 
state parametries, pressure derivative and bulk 
elastic modulus are presented below using Birch-
Murnaghan equation [22]:                         

 

𝑝(𝑉) = 1.5𝐵° [(
𝑉°

𝑉
)

7

3 − (
𝑉°

𝑉
)

5

3] {1 + 0.75(𝐵‘ − 4) [(
𝑉°

𝑉
)

2

3 − 1]},     (1) 

where 𝐵’, 𝐵° and 𝑉° are pressure derivative of 
bulk modulus, bulk modulus and equilibrium 
volume, respectively. The data in Table 1  are 

in good agreement with the theoretical [23–27] 
and experimental results[28].                         

Table 1 
Calculate, volume (𝑉°) and bulk modulus (𝐵°) of rutileTiO2 

  𝑉°[𝐴3] 𝐵0[𝐺𝑃𝑎] 

Present work 65.7 221 
Zhu Jun et al. [23] – 258 

Iuga et al. [24] 63.3 235 
Basavaraj et al. [25] – 229.1 

Yao et al. [LDA,GGA] [26] 61.11;64.47 245.2, 211.3 
Zhou et al . [27],  64.34 221 

Al-Khatatbeh et al. [ 28]Exp. 62.4 235 

As shown in Fig. 1(a), the energy
band gap was 2.098 eV, which is 40% smaller 
than that of the experimental band gap Ref [29]. 

The band gap calculation relies on the GGA 
approximation and DFT, suggesting that the band 
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gap magnitude is underestimated due to the 
derivative of the exchange-correlation energy 
gap [30; 31]. The energy band gap diagram of 

rutile TiO2 is illustrated in Figure 1(a).  
    The top of valence band is chosen as the Fermi 

level (𝐸𝑓 = 0 𝑒𝑉). The valence band maximum 

and conduction band minimum are observed at G 
point, which makes this material a direct gap (G–
G) material. Some of the important features of 
this gap are presented in Table 2.  

Table 2 
Direct and indirect band gaps (eV) and their valence corresponding to the conduction band transfer of rutile TiO2 at 

zero pressure  
Valence to conduction band transition Band gap energies (eV) 

G–G 2.098 
Z–Z 2.97 
R–R 2.14 
X–X 2.74 

M–M 2.14 
A–A 2.68 

 

Fig. 1(b) shows the relationship between hydrostatic pressure and energy band gap with increasing 
pressure, the variable gap energy of rutile TiO2 is indicated by the black dot in Fig. 1(b).  

 

 
 

Fig. 1. a) Band structure of rutile TiO2 at zero pressure and b) Relationship between band gap and pressure 
 

This means that the energy gap passes through 
two stages: first stage falls within the range (0–
8 GPa) of the applied pressure. The nonlinear 

relationship between energy gap and pressure, 
which decreases with increasing pressure, can be 
fitted 

using a third polynomial, which is expressed as:
 

𝐸𝑔(𝑝) = 𝐸𝑔(0)+7.394×10−4𝑝 + 1.152 × 10−4𝑝2 + 1.563 × 10−6𝑝3.   (2) 
 

In the second stage, after 10 GPa up to 60 
GPa, energy gap increases almost linearly with 
increasing pressure in steps of 10 GPa. These 
differences may be related to slow changes in 
the crystal structure caused by the external 
pressure. The results showed that the energy 
gap related to different electronic states 
expanded with increasing pressure.  
In order to get a better visualization of the 
electronic domain structure, T DOS and PDOS 
plots are shown in Fig. 2 (a–f). The total density 
of states roughly stretches from –57.5eV to 
23.3 eV, Fig. 2(a) determines the TDOS 
character with increasing pressure. Fig.2(b–f) 
PDOS shows that the contribution of (O-2p) 

states is dominant in VB, while (Ti-3d) states are 
less dominant for VB width it is 5.6eV (fig. 2a), 
which are in agreement with the theoretical results 
of Baizaee and Mousavi and the experimental 
results of 5.25eV and 5.4eV, respectively, [32; 33] 
from fig. 2 (b–f). As (Ti-d) and (O – p) states play an 
essential role in the construction of band 
conduction, from this we can conclude that 
transition between VB and CB is caused by the 
states of (O – 2p) and (Ti – 3d), since the states 
have maximum contribution to VB and CB. The DOS 
irregularity occurs in this region due to 
hybridization of the (O-p) orbital with the (Ti-3d) 
orbital. When DOS is compressed, it causes the 
energy gap to widen by shifting the valence band to 
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a lower energy level and the conduction band 
to a higher energy level. A decrease in TDOS 

and PDOS indicates that fewer states are available 
for a specified level. 

 

 

 
 

Fig. 2. a) TDOS of Rutile TiO2, and PDOS for b) Ti-d, c) Ti-p, d) O-p, e) Ti-s and f) O-s at zero and high hydrostatic 
pressures 

 

Optical properties. The most important and 
widely studied are the optical properties of 
materials, which is closely related to electronic, 
magnetic and thermal properties. The optical 
properties including refractive index, dielectric 

function, absorption coefficient and reflectivity 
obtained from light as it passes through the TiO2 
rutile were analyzed for the optimized TiO2 
rutile. Optical properties related to the complex 
dielectric function include conductivity, dielectric 
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constant, index of refraction, reflection and 
absorption. One is interconnected with the 
others. The electrical function is defined. 

𝜀(𝜔)=𝜀1(𝜔) + 𝑖𝜀2(𝜔),   (3) 
 

where:𝜀(1)(𝜔),𝜀2(𝜔) are express the real and 

imaginary parts of the dielectric function, 
respectively, in general, the dielectric function is 
associated with the electronic structure, the 
imaginary part of equation (2) is defined as 
follows:

 

𝜀2(ℎ𝜔) =
2𝜋𝑒2

Ω𝜀𝜊
∑ |⟨𝜓𝑘

𝑐 |𝑢, 𝑟|𝜓𝑘
𝑣⟩|2

𝑘,𝑣,𝑐 𝛿(𝐸𝑘
𝑐 -𝐸𝑘

𝑣-𝐸) ,      (4) 
 

where   𝜓𝑘
𝑐  and 𝜓

𝑘
𝑣

, μ,e represent the wave 

functions of the conduction band and valence 
band, incident electric field, and electronic 
charge at point k, respectively. The Kramer-
kronig relation was used to obtain the real part 
from the imaginary dielectric function. From fig. 
3(a), it can be seen that the imaginary part of the 
dielectric function it starts at 1.37 eV with a first 
peak of 5.12 eV due to excitation from VBM to 
CBM, second peak 7.69 eV and third peak 12 eV. 
This is due to transitions from A to M and M to G 
and G to L respectively. The influence of 

hydrostatic pressure is manifested as a 
transformation of the imaginary part of the 
dielectric function (ε2) towards larger values, as 
shown in Fig. 3(b). Light absorption efficiency of 
rutile decreases with increasing pressure. The 
dielectric function is important for the derivation 
of the other optical properties such as refractive 
index  (𝑛(𝜔)), energy loss spectrum (𝐿(𝜔)), 
reflectivity (𝑅(𝜔)) and absorption coefficient 

(𝛼(𝜔))through the specified relationships  

[34–36]. 

 

 
 

Fig. 3. Calculated  a) real and imaginary part of dielectric constants at zero pressure, b) imaginary part of dielectric 
function (𝜀2) under high pressure of  rutile TiO2 

 

𝑛(𝜔) = √
|𝜀(𝜔)|+𝜀1(𝜔)

2
;         (5) 

𝐿(𝜔) = 𝐼𝑚 (
−1

𝜀(𝜔)
) =

𝜀2(𝜔)

𝜀1
2(𝜔)+𝜀2

2(𝜔)
;        (6) 

𝑘(𝜔) = √
|𝜀(𝜔)|−𝜀1(𝜔)

2
;   (7) 

𝑅(𝜔) =
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2;   (8) 

∝ (𝜔) =
2𝑘𝜔

𝑐
.   (9) 

 

From fig.4(a) it can be seen that the refractive index is 2.63 and increases with pressure. Its peak is 
close to the value of 3.55 (under 60GPa) at an energy of 3.27eV in UV region as shown in Fig.4(a).  
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Fig. 4. Calculated a) refractive index(n(𝜔)) at various pressures b)  the absorption coefficient (𝛼(𝜔)) of  rutile TiO2 

 

As for the results, they are summarized in 
Table 3 for the refractive index and dielectric 
constant., It has been compared with the existing 
literature [32; 37; 38]. It turns out that the value 

of our calculated dielectric constant is somewhat 
greater compared to the values of the previous 
theoretical calculations [32] and experimental 
results [37]. 

Table 3 
Calculated values of refractive index and dielectric constant of rutile TiO2 

Method Refractive index (n) Dielectric constant (𝜀1) 
GGA-RPBE [Present work] 2.63 6.91 

GGA [32] 2.65 6.58 
GGA+SOC [32] 2.65 – 

LDA [32] 2.7 – 
LDA+SOC [32] 2.71 – 

Angel-Vosko [32] 2.54 – 
GGA+PBE [28] 2.61 – 

Experimental [37; 38] 2.71 [38] 6.693 [37] 

While the value of the refractive index agrees 
with experimental results [38], Fig. 4(a,b) show 

the achieved results of refractive index(n(𝜔)), 
absorption coefficient(𝛼(𝜔)) ,and Fig.5(a,b) show 

both the the energy loss function(L(𝜔))and 

reflectivity (R(𝜔)) and, which are a major factor 
to ensure full energy utilization, and their main 
peaks are identified in the UV region as shown in 
fig.5(a). The energy loss function (𝐿(𝜔)) is a key 
factor to estimate the total energy utilization, ,its 

main peaks are identified in the UV regions 
shown in Fig.5(a). They are connected by rough 
edges in reflection spectra as shown in Fig.5(b). 
From Fig.5(b), it can be seen that rutile TiO2 is an 
external absorbent of visible in accordance with 
the explanation of the study [39]. The absorption 
begins in the UV region (3.1 V) and reaches a 
maximum at 36.6 V, where the energy loss 
function is the lowest.                        

 
2rutile TiO(𝑅(𝜔)) b) the reflectivity)), 𝜔(. Calculated a) the energy loss function (L5Fig. 
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Conclusion 
We performed first principle calculations on 

rutile TiO2 using the GGA-RPBE approximation 
combined with the Ultra soft pseudo potential 
method to investigate both electronic and optical 
properties. The approximate band gap value was 
2.098 eV, which is smaller than the experimental 
value 3.0 eV, although this is in good agreement 
with other GGA-based calculations. On 
application of the external pressure, the direct 
band gap decreases in the first stage with the 
hydrostatic pressure from 0GPa to 8GPa and then 
increases in the second stage with the 
hydrostatic pressure from 10GPa to 60GPa. The 
valence bandwidth has been roughly determined 
to be 5.55 eV, which closely corresponds to the 

experimental value of 5.4 eV and is consistent 
with other theoretical results as well. The 
dielectric constant was estimated to be 6.91, 
which is slightly over the experimental value 
6.693. Whereas, the refractive index was 
determined with a value of 2.63 according to the 
electronic band structure against the 
experimental value of 2.71. The effects of 
pressure showed that the imaginary part of the 
dielectric function (ε2) shifts towards higher 
photon energies as the complex refractive index 
decreases with increasing pressure. The 
absorption spectrum shows that TiO2 poorly 
absorbs visible light and the absorption 
spectrum is dominated by ultraviolet light with a 
maximum at 36.4 eV.                              
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