

UDC 544.1:548.736.4 FEATURES OF THE STRUCTURE OF COPPER-CONTAINING COMPOSITES BASED ON Cu⁺ MALEATE COMPLEXES

Oleksandr V. Laguta, Viktor F. Vargalyuk, Volodymyr A. Polonskyy*, Oleksandr I. Kushnerov Oles Honchar Dnipro National University, 72 Gagarin Avenue, Dnipro, 49010, Ukraine Received 31 October 2023; accepted 28 December 2023; available online 25 January 2024

Abstract

Quantum chemical modeling (Gaussian 09, AIM2000, Chemcraft 1.8) of the interaction of copper atoms with acidic maleate complexes Cu⁺ [Cu(HM)(H₂O)] made it possible to identify two types of thermodynamically stable binuclear π -complexes of the general composition [Cu₂(HM)(H₂O)₂]. Type A is characterized by a framework structure in which both Cu⁺ ions and Cu⁰ atoms form π -bonds with sp²-hybridized carbon atoms of the vinyl fragment of the maleate ion within separate six-membered cycles (-Cu-C-C=O-H-O-). Type B is a linear σ -connection of a hydrated copper atom with the carboxyl oxygen of the maleate ion. The closeness of the formation energies of molecules A and B (-114.39 kJ/mol and -127.84 kJ/mol, respectively) indicates a high probability of their simultaneous formation during the synthesis of the composite {Cu(HM)+Cu}. X-ray diffraction analysis of composite samples confirmed that there is no metallic copper phase in it, but there is a phase of a new substance – products of the interaction of Cu⁰ atoms with π -complexes [Cu(HM)(H₂O)]. The analysis of the obtained results of our theoretical and experimental research indicates that during the synthesis of copper-containing composites {Cu(HM)+Cu} by partial chemical reduction of maleate complexes of Cu⁺, a mixture of mononuclear π -complexes [Cu(HM)(H₂O)] with various binuclear π -complexes [Cu₂(HM)(H₂O)₂] is formed.

Keywords: Cu+ maleate complexes; copper-containing composites; X-ray phase analysis; quantum chemical modeling.

ОСОБЛИВОСТІ БУДОВИ МІДЬВМІСНИХ КОМПОЗИТІВ НА ОСНОВІ МАЛЕЇНАТНИХ КОМПЛЕКСІВ Си⁺

Олександр В. Лагута, Віктор Ф. Варгалюк, Володимир А. Полонський, Олександр І. Кушнерьов Дніпровський національний університет імені Олеся Гончара, просп. Гагаріна, 72, Дніпро, 49010, Україна

Анотація

Квантовохімічне моделювання (Gaussian 09, AIM2000, Chemcraft 1.8) взаємодії атомів міді з кислими малеїнатними комплексами Cu⁺ [Cu(HM)(H₂O)] дозволило виявити два типи термодинамічно стійких біядерних π -комплексів загального складу [Cu₂(HM)(H₂O)₂]. Тип A характеризується каркасною структурою, в якій і йони Cu⁺, і атоми Cu⁰ утворюють π -зв'язки з sp²-гібридизованими атомами карбону вінільного фрагмента малеїнат-іона в рамках окремих шестичленних циклів (-Cu-C-C=O-H-O-). Тип В являє собою лінійне σ -з'єднання гідратованого атома міді з карбоксильним оксигеном малеїнат-іона. Близькість значень енергій утворення молекул A і В (–114.39 кДж/моль і –127.84 кДж/моль відповідно) вказує на високу ймовірність їх одночасного утворення у процесі синтезу композиту {Cu(HM)+Cu}. Рентгенодифракційний аналіз зразків композиту підтвердив, що в ньому відсутня фаза металевої міді, але присутня фаза нової речовини – продуктів взаємодії атомів Cu⁰ з π -комплексами [Cu(HM)(H₂O)]. Аналіз отриманих результатів проведеного нами теоретичного і експериментального дослідження вказує на те, що в процесі синтезу мідьвмісних композитів {Cu(HM)+Cu} шляхом часткового хімічного відновлення малеїнатних комплексів Cu⁺ утворюється суміш моноядерних π -комплексів [Cu(HM)(H₂O)] з різноманітними біядерними π -комплексами [Cu₂(HM)(H₂O)₂].

Ключові слова: малеїнатні комплекси Cu⁺; мідьвмісні композити; рентгенофазовий аналіз; квантовохімічне моделювання.

*Corresponding author: e-mail: polva57@gmail.com © 2023 Oles Honchar Dnipro National University; doi: 10.15421/jchemtech.v31i4.290194

Вступ

Однією сфер використання iз металокомплексів та металевих нанодисперсій є бактерицидні препарати [1; 2]. Ефективність дії колоїдного срібла на спектр мікроорганізмів широкий [3-5] спонукав дослідників зосередитись на вивченні можливості використання 3 означеною ціллю нанодисперсій і інших металів, зокрема - міді [6-8]. Ми зважили за продуктивне поєднати у одному препараті дві біоактивні речовини - малеїнатний комплекс міді та нанодисперсію цього металу [9]. На від [10], замість малеїнатного відміну комплексу з Cu²⁺-йонами ми застосували малеїнатний комплекс з Си+-йонами. Це дало наступні переваги. Перехід від Си²⁺ до Си⁺ значно підвищив міцність комплексу за рахунок появи додаткового (dπ-pπ)зв'язування центрального атома з вінільним фрагментом ліганда, про що повідомляється в різних джерелах [11-13]. Суттєво розширився інтервал існування нерозчинної форми комплексу: сіль Cu(HM) з однозарядним аніоном малеїнової кислоти стійка аж до pH=2 [14], тоді як сіль Си(М) в цих умовах повністю розчиняється [15]. Додатково експериментально було встановлено [9], шо додавання до солі Cu(HM) мідної дисперсії забезпечило її стійкість до дії атмосферного кисню.

Водночас, очікування можливого відносного зростання бактерицидності у суміші {Cu(HM)+Cu} не виправдались. Навпаки, вона стала меншою порівняно з дією на мікроорганізми індивідуальних компонентів. Це вказувало на те, що композит {Cu(HM)+Cu} являє собою не механічну суміш солі Cu(HM) і міді, а є новою речовиною.

Вірогідно, завдяки особливості технології синтезу композита {Cu(HM)+Cu}, яка полягала у контрольованому відновленні цинком Cu²⁺⁻ йонів у розчині малеїнової кислоти до їх повного зв'язування у комплекс Cu(HM) з подальшим частковим відновленням додатковою порцією цинку Cu+-йонів до стану, замість атомарного утворення металевої фази міді відбувається формування біядерного комплексу Сu₂(HM). Підґрунтям для реалізації такого процесу є, з одного боку, схильність π-комплексів Cu⁺ до утворення біядерних структур, про що свідчать експериментальні дані, наведені у роботах [16-18]. А з другого боку, - в [19] теоретично обґрунтована можливість існування стійких

π-комплексів атомарної міді з ненасиченими органічними кислотами.

3 метою конкретизації уявлень про механізм дiï металокомплексів та металодисперсій мікроорганізми на дослідити представляло інтерес будову композиту {Cu(HM)+Cu} та його базової складової – комплексу Cu(HM). Для вирішення поставленої задачі ми провели теоретичне моделювання структур, які можуть утворюватись у процесі взаємодії молекул Cu(HM) з атомами міді, у поєднанні з рентгенофазовим аналізом синтезованих зразків.

Експериментальна частина.

Синтез комплексної солі Cu(HM) та $\{Cu(HM)^+Cu\}$ мідьвмісного композиту здійснювали шляхом хімічного відновлення малеїнатних комплексів Cu(HM)+ дисперсією металевого цинку. Процедура синтезу, опис обладнання і реактивів, методи якісного і кількісного аналізу складу цільового продукту наведені в [20].

Нами були отримані і використані в ренгенодифракційних дослідженнях дві речовини:

- комплекс [Cu(C₄O₄H₃)(H₂O)], позначений як Cu(HM);

- композит {[Cu(C₄O₄H₃)(H₂O)]·0.5Cu}, позначений як {Cu(HM)+Cu}.

Для вилучення адсорбованої води зразки висушували до постійної маси.

Рентгенофазовий аналіз зразків проводився із застосуванням дифрактометра ДРОН-2.0 у монохроматизованому Cu(Kα)випромінюванні. Для визначення фазового складу та параметрів кристалічних ґраток різних фаз отримані дифрактограми аналізували із використанням програмного забезпечення QualX2 [21].

Результати та їх обговорення

Оцінку можливості приєднання атомарної міді до малеїнатного комплексу Си⁺ проводили шляхом квантовохімічного моделювання відповідних структур (Gaussian 09 [22], AIM 2000 [23], Chemcraft 1.8 [24]). Методологія розрахунків детально описана в одній з наших попередніх робіт [12].

У якості базового об'єкту прийнятий комплекс [Cu(C₄O₄H₃)(H₂O)] як основний компонент мідьвмісних композитів [20].

Топологічний аналіз функцій розподілу електронної густини у вузлі зв'язування Сu-йонів з sp²-гібридизованими атомами карбону у цьому комплексі показав [12], що сумісну молекулярну орбіталь центральний атом утворює лише з одним атомом подвійного (C=C)-зв'язку. Другий атом карбону залишається стерично доступним для взаємодії з іншими реагентами. Тому біля нього ми і розміщували атом міді перед оптимізацією створеної таким чином вихідної структури.

Нами також було враховано, що за повного відновлення аквакомплексів Cu²⁺, кінцевим продуктом є моногідратований атом міді Cu(H₂O) [25]. Саме в такому стані і використовувався атом міді у якості атакуючого реагента.

На рис. 1 приведено оптимізовану біядерну молекулу [Cu₂(HM)(H₂O)₂] (структура А). Як видно з цього рисунку, гідратований атом міді дійсно міцно зв'язується з sp²-гібридизованим атомом карбону, про що свідчить мала довжина (Cu-C)-зв'язку (1.996 Å). Фіксація атома мілі посилюється утворенням шестичленного циклу (-Cu-C-C=O-H-O-). Подібний шестичленний цикл утворює і Си+йон. Додатково він входить і до п'ятичленного циклу (-Cu-C=C-C-O-). Це вочевидь сильно напружує π-зв'язок Cu⁺ з атомом карбону, про що свідчить збільшення міжядерної відстані до 2.646 Å проти 2.115 Å у вихідному комплексі [Cu(HM)(H₂O)].

Fig. 1. Configuration of stable binuclear structures of [Cu₂(HM)(H₂O)₂] Рис. 1. Конфігурація стійких біядерних структур [Cu₂(HM)(H₂O)₂]

Надзвичайно цікавою особливістю біядерної структури А є те, що внаслідок перерозподілу електронної густини атом міді у формально нульовому стані окиснення, на який чітко вказує його мультиплетність (M = 2), має заряд, майже ідентичний заряду йона Cu⁺: $z(Cu^0) = +0.350$ е, $z(Cu^+) = +0.348$ е (рис. 2).

Fig. 2. Distribution of the effective charge of binuclear structures [Cu₂(HM)(H₂O)₂] Рис. 2. Розподіл ефективного заряду біядерних структур [Cu₂(HM)(H₂O)₂]

Розгляд інших варіантів зв'язування гідратованого атома Купруму з кислим малеїновим комплексом Сu⁺ дозволив виявити не менш стійкі структури, одна з яких представлена молекулою В на рис. 1. Тут атом Сu⁰ утворює з оксигеном карбоксильної групи достатньо міцний σ-зв'язок, на що вказує його мала довжина (1.854 Å). У цьому випадку ми спостерігаємо реалізацію ефекту синергічної дії σ-зв'зування на π-зв'язування, про існування якого нами повідомлялось в [12]. Дійсно, в молекулі В довжина π-зв'язку (2.036 Å) стає меншою порівняно не лише з молекулою A, а й з вихідним моноядерним комплексом [Cu(HM)(H₂O)].

Характерно, що, як і у випадку структури А, в структурі В заряди атомів Купруму і йонів Cu⁺ позитивні, однак – нерівноцінні: $z(Cu^0) =$ +0.345 e, $z(Cu^+) =$ +0.249 e (рис. 2).

Розрахунок енергетичного ефекту приєднання $Cu(H_2O)$ до комплексу [$Cu(HM)(H_2O)$]: $Cu(H_2O)+[Cu(HM)(H_2O)] = [Cu_2(HM)(H_2O)_2] + \Delta E_e$ показав, що дві принципово різні за будовою молекули A і B мають дуже близькі значення ΔE_e : –114.39 кДж/моль і –127.84 кДж/моль відповідно. Це вказує на те, що у процесі синтезу композиту {Cu(HM)+Cu} вони можуть утворюватись з рівноцінною ймовірністю.

Iз використанням кристалографічних даних, отриманих основі рентгенона структурного дослідження моногідрату кислого купрум(I) малеату, виконаного у роботі [26], за допомогою програмного забезпечення VESTA 3 [27] була побудована тривимірна комп'ютерна модель кристалічної структури [Cu(C₄H₃O₄)(H₂O)] (рис. 3) та змодельована порошкова рентгенівська дифрактограма для даної речовини, яка разом експериментально iз отриманими дифрактограмами наведена на рис. 4.

Fig. 3. The model of the crystal structure of [Cu(C₄H₃O₄)(H₂O)] Рис. 3. Модель кристалічної структури [Cu(C₄H₃O₄)(H₂O)]

теоретично Розглядаючи розраховану дифрактограму (рис. 4, А) як еталонну, та порівнюючи ïï 3 отриманою експериментальним шляхом дифрактограмою комплексної солі (рис. 4, С) можна зробити висновок, що кристалічна структура комплексної солі [Cu(HM)(H₂O)] відповідає структурі сполуки, описаної в роботі [26] (ромбічна сингонія, просторова група *Pm2*₁*n*, параметри елементарної комірки: *a* = 8.433 Å, b = 6.695 Å, c = 4.951 Å). Разом з цим попередньо очікувалось, що композит

загального складу {Cu(HM)+Cu} являє собою суміш комплексної солі [Сu(HM)(H₂O)] з нанодиспергованою металічною міддю. Однак, приймаючи до уваги відсутність на дифрактограмі композиту (рис. 4. B) максимумів, характерних для міді, можемо казати, що рентгенофазовий аналіз не підтвердив цього припущення, а вказав на те, атоми Cu хімічно зв'язуються шо 3 комплексної солі, формуючи молекулами таким чином певні хімічні сполуки. Про це інтенсивностей свідчить зміна деяких дифракційних максимумів на (рис. 4, В) додаткових максимумів порівняно із (рис. 4, А, С), а також наявність інтенсивності.

2θ (degrees)

Fig. 4. X-ray diffraction patterns of the modeled structure [Cu(C4H3O4)(H2O)] (A), composite {Cu(HM) · 0.5Cu} (B) and complex salt [Cu(HM)(H2O)] (C). Рис. 4. Дифрактограми змодельованої структури [Cu(C4H3O4)(H2O)] (A), композиту {Cu(HM) · 0.5Cu} (B) та комплексної солі [Cu(HM)(H2O)] (C).

Представлені результати рентгенофазового аналізу свідчать, що у зразку композиту {Cu(HM)+Cu} окрім комплексної $[Cu(HM)(H_2O)]$ присутня солі додаткова речовина, або навіть декілька речовин. Ми цю речовину, або декілька речовин, позиціонуємо біядерними сполуками [Си₂(HM)(H₂O)₂]. 3 виходячи з результатів квантовохімічного моделювання взаємодії $Cu(H_2O)$ 3 $[Cu(HM)(H_2O)].$

На жаль, зважаючи на низьку інтенсивність відповідних дифракційних максимумів, параметри новоутвореної у композиті фази визначити не вдалось.

Висновки

Квантовохімічне моделювання взаємодії атомів міді з кислими малеїнатними комплексами Сu⁺ дозволило виявити два типи термодинамічно стійких біядерних πкомплексів загального складу [Cu₂(HM)(H₂O)₂].

Тип А характеризується каркасною структурою, в якій і йони Сu⁺, і атоми Сu⁰ утворюють π-зв'язки з sp²-гібридизованими атомами карбону вінільного фрагмента малеїнат-іона рамках окремих в шестичленних циклів (-Cu-C-C=O-H-O-). Тип В собою лінійне σ-з'єднання являє гідратованого атома міді з карбоксильним оксигеном малеїнат-іона. Близькість значень енергій утворення молекул А і В вказує на високу ймовірність їх одночасного утворення у процесі синтезу композиту {Cu(HM)+Cu}.

Рентгенофазовий аналіз зразків композиту підтвердив, що в ньому відсутня фаза металевої міді, але присутня фаза нової речовини – продуктів взаємодії атомів Cu⁰ з π -комплексами [Cu(HM)(H₂O)].

Аналіз отриманих результатів проведеного нами теоретичного і експериментального дослідження вказує на те, що в ході синтезу мідьвмісних композитів {Си(HM)+Сu} шляхом часткового хімічного відновлення

References

- Guo Z, Sadler P. J. (1999). Metals in medicine. [1] Angewandte Chemie International Edition 1999; 38 (11): 1512-1531. http://doi: 10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-<u>ANIE1512>3.0.CO;2-Y</u>
- [2] Hossain, M. S., Zakaria, C. M., Kudrat-E-Zahan, M. (2018). Metal complexes as potential antimicrobial agent: a review. American Journal of Heterocyclic Chemistry, 4(1), 1. http://dx.doi.org/10.11648/j.ajhc.20180401.11.
- [3] Aldabaldetrecu, M., Tamayo, L., Alarcon, R., Walter, M., Salas-Huenuleo, E., Kogan, M. J., Guerrero, J., Paez, M., Azócar, M. I. (2018). Stability of Antibacterial Silver Carboxylate Complexes against Staphylococcus epidermidis and Their Cytotoxic Effects. Molecules, 23(7), 1629.http://dx.doi.org/10.3390/molecules2307 <u>1629</u>.
- [4] Irfan, M. I., Amjad, F., Abbas, A., Rehman, M. F., Kanwal, F., Saeed, M., Ullah, S., Lu, C. (2022). Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules, 27, 3363. http://dx.doi.org/10.3390/molecules27113363.
- Kalhapure, R. S., Akamanchi, K. G., Mocktar, C., Govender, T. (2014). Synthesis and Antibacterial [5] Activity of Silver Nanoparticles Capped with a Acid-terminated Carboxylic Generation 1 Oleodendrimer. Chemistry letters, 43(7), 1110-1112. http://dx.doi.org/10.1246/cl.140151.
- [6] Theivasanthi, T., Alagar, M. (2011). Studies of copper nanoparticles effects on microorganism. Annals of Biological Research, 2(3), 368–373.
- [7] Sirova, G. O., Makarov, V. O., Mishina, M. M., Avramenko, V. L., Lapshin, V. V., Makarov, V. V. (2019). Copper - nanocopper: chemical and pharmaceutical aspect: monograph. Kharkiv: Planet-Print (in Ukrainian).
- Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Stets, N. V., [8] Shchukin, A. I. (2014). [Microbiological properties of copper dispersion obtained by cathodic deposition in the presence of acrylic acid]. Bulletin of Dnipropetrovsk University. Series Chemistry, 22(2), 47–51 (in Ukrainian). http://dx.doi.org/10.15421/081420.
- Vargaluyk, V. F., Polonskyy, V. A., Sklyar, T. V., Stets, N. [9] V., Lahuta, O. V. (2023). Pysico-chemical and bactericidal properties of copper containing composites based on maleinate complexes Cu+. Journal of Chemistry and Technologies, 31(2), 208–215. https://doi.org/10.15421/jchemtech.v31i2.275070
- [10] Aliakbar Dehno Khalaji, Moslem Emami, Negin Mohammadi (2021). Antibacterial Activity of Copper (II) Complexes of Maleic Acid: Thermal Studies, and New Precursors for Preparation of CuO. Journal of Medicinal and Chemical Sciences, 4, 626-634. https://doi.org/10.26655/JMCHEMSCI.2021.6.11
- [11] Kurasova, Y. D., Vargaluyk, V. F., Polonskyy, V. A. (2022). Ouantum chemical modeling of aquachlorocomplexes of Cu+ with acrylic, maleik and fumaric acids Journal of Chemistry and Technologies, 30(4), 530-536. https://doi.org/10.15421/jchemtech.v30i4.263280

малеїнатних комплексів Cu+ утворюється суміш моноядерних π-комплексів [Cu(HM)(H₂O)] з різноманітними біядерними π-комплексами [Cu₂(HM)(H₂O)₂].

- [12] Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., Glushkov, V. N. (2019). Features of $(d\pi - p\pi)$ -binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148-157. https://doi.org/10.15421/081916/
- [13] Kamau, P., Jordan, R. B. (2002). Formation Constants of Copper (I)- Olefin Complexes in Aqueous Solution. *Inorganic chemistry*, *41*(4), 884–891. doi: 10.1021/ic010872h
- [14] Navon, N., Masarwa, A., Cohen, H., Meyerstein, D. (1997). pH dependence of the stability constants of copper (I) complexes with fumaric and maleic acids in aqueous solutions. Inorganica chimica acta, 261(1), 29-35. https://doi.org/10.1016/S0020-1693(96)05575-2
- [15] Orlova, T. D., Katrovtseva, A. V., Bychkova, S. A., Lan, Fam Tkhi. (2011). The thermodynamic characteristics of formation of Copper(II) ion complexes with carboxylic acids in aqueous solutions. Journal of Coordination Chemistry. 85(2), 275-279. http://doi: 10.1134/S0036024411020269
- [16] Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T., Mys'kiv, M. (2017). Ligand forced dimerization of copper(I)-olefin complexes bearing 1,3,4-thiadiazole core. *Acta Cryst, C73*, 36–46. <u>https://doi.org/10.1107/S2053229616018751</u>
- [17] Goreshnik E. A., Veryasov G., Morozov D.et al. (2016). Solvated copper(I) hexafluorosilicate π -complexes based on $[Cu_2(amtd)_2]^{2+}$ (amtd = 2-allylamino-5methyl-1,3,4-thiadiazole) dimer. J. Organomet. Chem, 810, 1-11. https://doi.org/10.1016/j.jorganchem.2016.03.001
- [18] Luk'yanov, M., Slyvka, Yu., Ardan, B., Mys'kiv, M. (2018). Synthesis and crystal structure of the π complex of cuprum (I) sulfamate 32-(N-alil)-amino-5metyl-1,3,4-thiadiazole composition $|Cu_2(C_6H_{10}N_3S_2)_2(NH_2SO_3)_2|$. Visnyk Lviv. Univ. Ser. Chem., 59(1), 157-163 (in Ukrainian).
- [19] Vargalyuk V. F., Osokin, Y. S., Polonskyy, V. A. (2020). Formation of the π -complexes of copper atoms with acrylic, maleic and fumaric acids in aqueous medium. Journal of Chemistry and Technologies, 28(2), 153-160. https://doi.org/10.15421/082016
- [20] Vargaluyk, V. F., Polonskyy, V. A., Osokin, Y. S., Lahuta, O. V. (2021). Syntesis of copper composites containing maleic acid. Journal of Chemistry and Technologies, 29(3), 400-409. http://dx.doi.org/10.15421/jchemtech.v29i3.241965.

- [21] Altomare A. Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi R. (2017). Main features of QUALX2.0 software for qualitative phase analysis. Powder Diffraction, 32(1), S129-S134. https://doi.org/10.1017/S0885715617000240.
- [22] Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Nakatsuji, H. (2009). Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT, 200(28).
- [23] König, F. B., Schönbohm, J., Bayles, D. (2001). AIM2000 - A program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545-559.

- [24] Zhurko, G. A. (2019). Chemcraft-graphical program for visualization of quantum chemistry computations, Version 1.8., from <u>https://chemcraftprog.com</u>.
- [25] Vargaljuk, V., Okovytyy, S., Polonskyy V., Kramska O., Shchukin A., Leszczynski J. (2016) Copper crystallization from aqueous solution: initiation and evolution of the polynuclear clusters. *Journal of Cluster Science*, 28(5), 1–12. doi: 10.1007/s10876-017-1239-4
- [26] Zavalij, P. E., Mys'kiv M. G., Gladyshevskij, E. I. (1985). Kristallicheskaja struktura monogidrata kislogo maleata medi(I). *Kristallografija*, 30, 688–692.
- [27] Momma, K., Izumi, F. (2011). VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. *Journal of Applied Crystallography*, 44(6), 1272–1276. https://doi.org/10.1107/S0021889811038970