

Journal of Chemistry and Technologies

pISSN 2663-2934 (Print), ISSN 2663-2942 (Online).

journal homepage: <u>http://chemistry.dnu.dp.ua</u> *editorial e-mail:* chem.dnu@gmail.com

UDC 543.24: 544.653.1 ELECTROCHEMICAL SYNTHESIS AND SPECTROPHOTOMETRIC DETERMINATION OF MALEINATE COMPLEXES OF Cu⁺

Yuliia D. Kurasova, Volodymyr A. Polonskyy*, Viktor F. Vargalyuk, Yevhen S. Osokin, Oksana V. Saievych

Oles Honchar Dnipro National University, 72, Gagarin Ave., Dnipro 49010, Ukraine Received 25 December 2023; accepted 15 February 2023; available online 25 April 2024

Abstract

The study explored the process of anodic ionization of copper in an aqueous solution of maleic acid (H₂M): we substantiated the optimal conditions for the electrochemical synthesis of Cu⁺ maleate complexes, ensuring nearly a 100 % yield of the target product under the following parameters: potentiostatic mode, anode potential of 0.1 V (vs. silver/silver chloride electrode), concentration of (H₂M) = 0.1 M (pH = 2), and temperature (t°) = 60 °C. By utilizing spectrophotometry, along with quantum-chemical modeling of absorption spectra for various complex structures, we determined the composition of the obtained product as [Cu⁺(H₂O)₃(HM⁻)]. We chose the diagnostic criterion for identifying the nature of the complex as the difference in wavelength absorption for light in the π -bond of Cu⁺ with the sp²-hybridized carbon atom of the vinyl fragment of the maleate ion (around 400 nm) and the σ -bond of Cu⁺ with the ionized carboxyl group (around 300 nm). For the quantitative analysis of the working solution regarding the content of maleate π -complexes of Cu⁺, we suggest using the A, C-dependence measured at 360 nm. *Keywords*: Cu⁺ maleate complexes, quantum chemical modelling, electrochemical synthesis, spectrophotometry.

ЕЛЕКТРОХІМІЧНИЙ СИНТЕЗ ТА СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ МАЛЕЇНАТНИХ КОМПЛЕКСІВ Сu+

Юлія Д. Курасова, Володимир А. Полонський, Віктор Ф. Варгалюк, Євген С. Осокін,

Оксана В. Саєвич

Дніпровський національний університет імені Олеся Гончара, просп. Гагаріна, 72, Дніпро, 49010, Україна

Анотація

Досліджено процес анодної іонізації міді у водному розчині малеїнової кислоти (H₂M). Обгрунтовано оптимальні умови електрохімічного синтезу малеїнатних комплексів Cu⁺, які забезпечують практично 100 % вихід за струмом цільового продукту: режим потенціостатичний, потенціал анода 0.1 В відносно хлоридносрібного електрода порівняння, C(H₂M) = 0.1 M (pH = 2), t° = 60 °C. Спектрофотометрично, у поєднанні з квантово-хімічним моделюванням спектрів поглинання електромагнітного випромінювання різноманітними комплексними структурами, визначено склад отриманого продукту: [Cu⁺(H₂O)₃(HM·)]. В якості діагностичного критерію для ідентифікації природи комплексу обрано різницю довжин хвиль поглинання світла по π -зв'язку Cu⁺ з sp²-гібридним атомом Карбону вінільного фрагмента малеїнат-йона (область 400 нм) та σ -зв'язку Cu⁺ з іонізованою карбоксильною групою (область 300 нм). Для кількісного аналізу робочого розчину на вміст малеїнатних π -комплексів Cu⁺ запропоновано використовувати A, C-залежність, виміряну за 360 нм.

Ключові слова: малеїнатні комплекси Cu⁺, квантово–хімічне моделювання, електрохімічний синтез, спектрофотометрія.

*Corresponding author: e-mail: polva57@gmail.com © 2024 Oles Honchar Dnipro National University; doi: 10.15421/jchemtech.v32i1.294751

Вступ

Комплексні сполуки міді завдяки своїй різноплановій біоактивності знайшли широке практичне застосування у якості протисудомних, протизапальних, протигрибкових та антибактеріальних препаратів [1– 11].

Серед них окрему групу складають комплекси Сu⁺ [12–15], особливо π-комплекси Cu⁺ [16]. Синтез таких комплексів здійснюють різними методами: або препаративно, з використанням у якості прекурсора сполук Cu⁺ [17] чи Cu²⁺ [18], або електрохімічно, застосовуючи змінний [19–21] чи постійний струм [22] і міді як прекурсора.

Співставлення технічних характеристик перелічених методів вказує на значні переваги електрохімічного варіанту - з точки зору продуктивності та селективності процесу. Варіювання площею мідного анода дозволяє в широкому діапазоні регулювати швидкість утворення цільового продукту, а варіювання величиною потенціала дозволяє впливати на природу самого продукту.

Зі зрозумілих причин дослідження процесу іонізації атомів міді і відпрацювання режиму електролізу в робочому розчині потребує застосування якісного та кількісного аналізу продукту, що утворюється. Ми вважили за доцільне використати спектрофотометричний метод, поліпшивши його інформативність квантово-хімічним моделюванням можливих молекулярних структур та відповідних для них спектрів поглинання електромагнітного випромінювання.

У якості об'єкту синтезу було обрано групу малеїнатних комплексів Си⁺, здатних інтенсивно пригнічувати життєдіяльність мікроорганізмів [16].

Експериментальна частина

У попередніх роботах була проведена малеїнатних оптимізація π-ацидоаквакомплексів купруму [23] та πацидохлороаква-комплексів купруму [24] на рівні B3LYP/Wachters+f для атомів Купруму та B3LYP/6-311G(d, p) для атомів лігандів з врахуванням сольватаційної моделі РСМ. У даній роботі ці оптимізовані геометрії були розрахунків видимоговикористані для ультрафіолетового спектру (UV-Vis) y програмному пакеті Gaussian 09 [25] 3 використанням напівемпіричного параметризованого методу РМ6 [26; 27], який добре описує такі спектри для комплексів купруму. Візуалізація та інтерпретація розрахованих

UV-Vis-спектрів виконувалась в програмному середовищі GaussView.

Для проведення електрохімічних вимірювань застосовано потенціостат ПІ-50-1 з програматором ПР-8 та термостатованою трьохелектродною коміркою. якості В робочого використано мідний (марка МО) торцевий електрод з площею поверхні Допоміжним електродом 0.16 см². була платинова пластина (S = 4.0 см²), а порівняння електродом слугував хлоридносрібний напівелемент, з'єднаний з заповнений коміркою через фоновим розчином капіляр Луггіна. Підготовка поверхні робочого електроду полягала у його механічному поліруванні та знежирюванні содою з подальшим ретельним промиванням дистильованою водою. Задані значення температури з точністю ±1 С забезпечували допомогою ультратермостату UTU-2. за Швидкість розгортки потенціалу під час поляризаційних вимірювань становила 1 мВ/с. Дослідження проведені у фоновому (1 M Na₂SO₄) та робочому (1 M Na₂SO₄, 0.1 M H_2M) розчинах, величини pН яких встановлювали в межах 2.0 ± 0.1 додаванням необхідної кількості розчину NaOH та контролювали іономіром ЕВ-74. Перемішування розчинів під час електрохімічних вимірювань не застосовували. Для визначення найбільш прийнятного режиму електро-хімічного синтезу комплексу були випробувані як потенціостатичні, так і гальваностатичні умови електролізу.

Розчини для спектрофотометричних вимірювань готували в скляній комірці з розділеними електродними просторами, аналогічно до методики у роботі [22]. Використовували платиновий катод площею 4 см² і мідний анод площею 10 см². Електроліз проводили у робочому розчині з об'ємом аноліту 30 мл. Густина анодного струму складала 2 мА/см², об'ємна густина струму – 0.67 А/л. Вимірювання А, λ-залежності R 280-1000 інтервалі нм проводили за спектрофотометра допомогою СФ-46 3 використанням кварцових кювет товщиною 1 см.

Результати та їх обговорення

Електроокиснення міді в цілому є стадійним процесом:

$$Cu^{0} - e^{-} + 2H_{2}O = [Cu(H_{2}O)_{2}]^{+}$$
 (1)

$$[Cu(H_2O)_2]^+ - e^- + 4H_2O = [Cu(H_2O)_6]^{2+}$$
(2).

Однак за відсутності у розчині інших, крім молекул води, лігандів, термодинамічні

характеристики цих стадій збігаються і вони реалізуються одночасно. Тому, навіть за невеликого відхилення потенціалу електрода від рівноважного, мідь окиснюється до Cu²⁺⁻ йонів. А за умови введення у розчин лігандів, які утворюють з Cu⁺ міцні та електронеактивні за потенціалом іонізації міді комплекси, стає можливою реалізація тільки стадії (1) у вигляді реакції:

 $Cu^{0} - e^{-} + nH_{2}O + L^{-} = [Cu(H_{2}O)_{n}(L)]$ (3).

До такого типу лігандів відноситься малеїнова кислота, яка здатна приєднуватись до Cu⁺-йона не лише шляхом утворення з ним σ-зв'язку карбоксильною групою, а й може утворювати міцний π-зв'язок через sp²гібридизований атом Карбону вінільного фрагмента [23; 24].

За даними квантово-хімічних розрахунків, наведених у [24], йони Сu⁺ у водному середовищі здатні утворювати 8 малеїнатних комплексів: три з молекулярною формою

малеїнової кислоти [Cu(H₂O)_n(H₂M)]⁺ (n = 1, 2, 3). 3 однозарядним три аніоном $[Cu(H_2O)_n(HM)]$ (n=1, 2, 3), та два з двозарядним аніоном $[Cu(H_2O)_n(M)]^-$ (n = 2, 3). Тому, перед проведенням електрохімічного дослідження реакції (3), нами була відпрацьована методика спектрофотометричного визначення малеїнатних πкомплексів Си+.

На рис. 1 представлені теоретичні спектри які поглинання світла, відповідають можливим продуктам анодної іонізації міді у водному розчині малеїнової кислоти. Виявилось, що комплексні сполуки Си+ з молекулярною формою кислоти мають лише одну частоту поглинання (рис. 1а), пов'язану з πзв'язком. Інші зв'язки в діапазоні λ = 100-600 нм проявляються. не Саме такі експериментальні спектри і обговорювались раніше в літературі [22].

Однак за умови зменшення кислотності розчину співвідношення концентрацій H₂M і HM- зміщується в бік останніх так, що за pH = 2 більше 90 % молекул малеїнової кислоти представлені аніонами НМ- [25]. Тим самим створюються умови для формування в таких розчинах переважно комплексів Cu⁺ з HM-, теоретичний спектр яких вже має три частоти поглинання світла: одну в області 400 нм і дві НМ (рис. 1b). області 300 Останні R відповідають електронним переходам по σ зв'язку іонізованої карбоксильної групи з Си+йоном.

Введення до внутрішньої координаційної сфери молекул води по-різному впливає на значення цих частот. Згідно з наведеним в [23] теоретичним аналізом взаємодії σ - та π -лігандів, в означеному типі комплексів молекули води антагоністично діють на власні σ -зв'язки, але синергічно – на π -зв'язок. Саме таку картину ми і спостерігаємо в комплексах [Cu⁺(H₂O)_n(HM⁻)] (рис. 1b, с; таблиця).

Як видно з таблиці, де наведено довжини хвиль поглинання для комплексів з n = 1, 2, 3,

за рахунок росту енергії π -зв'язку з ростом n лінія поглинання в області $\lambda = 400$ нм закономірно зміщується в бік менших λ . І навпаки, зменшення енергії σ -зв'язку з ростом n приводить до збільшення λ в області 300 нм.

Для ідентифікації комплексів ми вважили за доцільне використати різницю величин λ поглинання квантів електромагнітного випромінювання π - та σ -зв'язками йонів Cu⁺. Адже абсолютні значення теоретичних та експериментальних довжин хвиль не можуть ідеально співпадати за наявності неминучої системної похибки квантово-хімічних розрахунків. В той час як за використання $\Delta\lambda$ системна похибка ліквідується.

Виявилось, що значення Δλ дуже чітко прив'язане ДО кількості σ-лігандів y сфері внутрішній координаційній πкомплексів (таблиця). Причому між собою вони відрізняються на десятки нм, що виводить їх далеко за межі похибки експериментальних спектрофотометричних вимірювань. Цe сприяє достовірності ідентифікації π-комплексів за величиною Δλ.

Table

The theoretical values of wavelengths (nm) of light absorption by complexes [Cu⁺(H₂O)_n(HM⁻)] by π -bond (λ_1) and σ -bond (λ_2 , λ_3)

Таблиця

Теоретичні значення довжин хвиль (нм) поглинання світла комплексами [Cu⁺(H₂O)_n(HM⁻)] по π-зв'язку (λ₁) та σ-зв'язку (λ₂, λ₃)

0 0D JIBRY (12) 13)			
n	1	2	3
λ_1	412	400	380
λ_2	316	329	334
λ3	294	304	317
$\Delta\lambda_{1-3}$	118	96	63

На рис. 2 наведена експериментальна A, λзалежність, виміряна в розчині малеїнової кислоти з pH = 2 після 30 хвилин анодного розчинення в ньому міді за об'ємної густини струму 0.67 А/л. Як бачимо, загальний вигляд цієї залежності повністю відповідає формі теоретичних кривих рис. 1 для комплексів $[Cu^+(H_2O)_n(HM^-)].$

Fig. 2. A, λ -dependence measured in a 0.1 M solution of H₂M with pH = 2 after 30 minutes of anodic dissolution of copper in it at a current density of 0.67 A/L

Рис.2. А, λ-залежність, виміряна в 0.1 М розчині H₂M з pH = 2 після 30 хв. анодного розчинення в ньому міді за об'ємної густини струму 0.67 А/л

За різницею довжин хвиль зареєстрованих максимумів поглинання рис. 2 ($\Delta\lambda = 62$ нм) ми визначили склад комплексів, синтезованих електрохімічно. Ними виявились тетралігандні структури [Сu+(H₂O)₃(HM-)], що було у деякій мірі неочікувано, оскільки в [18, 25] описано препаративний синтез з водного середовища комплексів $[Cu^{+}(H_2O)(HM^{-})].$ при Вочевидь. агрегуванні відбувається дегідратація до стабільної в твердому стані моногідратної форми. А в розчині за стандартних умов домінує [Cu+(H₂O)₃(HM-)].

Крім якісного аналізу, спектрофотометричний метод традиційно використовують для кількісного визначення активної речовини. оптично Згідно 3 методикою, наведеною в [28], ми отримали малеїнатний комплекс Cu+ та приготували його насичений розчин з контрольованою концентрацією. Далі шляхом розведення та вимірювання величин А для отриманих розчинів побудували градуювальний графік, представлений на рис. З. Значення А вимірювали при 360 нм.

Fig. 3. Calibration curve for the spectrophotometric determination of the complex [Cu+(H₂O)_n(HM·)] Рис. 3. Градуювальний графік для спектрофотометричного визначення комплексу [Cu+(H₂O)_n(HM·)]

Для вибору робочих параметрів електролізу проводили відповідні електрохімічні дослідження. На рис. 4 представлені анодні поляризаційні залежності, виміряні в розчинах без та з малеїновою кислотою.

Як видно з цього рисунку, поява малеїнатйонів закономірно збільшує швидкість розчинення міді, оскільки до процесу (1) додається процес (3). Співвідношення цих стадій є максимальним на користь процесу (3) за малих струмів, поступово зменшуючись з ростом *i*. Характер такої зміни можна оцінити за величиною $(i_2/i_1)_E$ кривих 1, 2 рис. 4. Так, за переходу від 0.02 В до 0.1 В показник $(i_2/i_1)_E$ зменшується приблизно втричі: з 7.7 до 2.6.

Fig. 4. Anodic polarisation dependences measured in solutions: 1 – 1 M Na₂SO₄ pH = 2.0; 2 – 1 M Na₂SO₄, 0.1 M H₂M, pH = 2.0. t = 20 °C Рис. 4. Анодні поляризаційні залежності, виміряні в розчинах: 1 – 1 M Na₂SO₄, pH=2.0; 2 – 1 M Na₂SO₄, 0.1 M H₂M, pH = 2.0. t = 20 °C.

Тобто, за великих значень потенціалу електрода продуктивність процесу росте, але водночас вихід цільового продукту може зменшуватись. помітно V якості компромісного ми обрали Е = 0.1 В, зваживши на те, що продукт реакції (1) за наявності надлишку малеїнат-йонів буде у об'ємі розчину зв'язуватись у комплекс. А вже залишок Cu⁺, який не зв'яжеться, – диспропорціюнує до Си²⁺ і Си⁰. Для визначення виходу за струмом малеїнатних комплексів Cu+, ми співставили ïx концентрації, отримані

реагентно (рис. 3), з концентраціями, розрахованими за законом Фарадея. Оскільки відхилення не перевищило 1 %, можна вважати, що вихід цільового продукту, синтезованого за E = 0.1 B, становить практично 100 %.

В цілому електроліз можна проводити не лише потенціостатично а й гальваностатично, що є технічно більш простим варіантом. Ми співставили можливості обох методів. На рис. 5 представлені відповідні і, t- та E, t-криві.

Fig. 5. E, τ - and i, τ -dependencies measured in a solution of 1 M Na₂SO₄, 0.1 M H₂M, pH = 2.0 at 1 - i = 2.3 mA/cm², 2 - E = +0.027 V. t = 30 °C

Рис. 5. Е, т- та і, т-залежності, виміряні в розчині 1 М Na₂SO₄, 0.1 М H₂M, pH=2.0 за: 1 – і = 2.3 мА/см², 2 – Е = +0.027 В. t = 30 °С

Як видно, стабільно електроліз йде в потенціостатичному режимі, а в гальваностатичному – ні. В останньому випадку спостерігається дуже великий дрейф потенціалу.

Традиційним фактором, що сприяє росту продуктивності хімічного процесу, є температура. Дійсно, як видно з рис. 6, за нагрівання швидкість анодної іонізації міді в малеїнатному розчині закономірно зростає. Однак виявилось, що декадний коефіцієнт реакції (3) є дуже низьким. Так, за переходу від 30 °С до 40 °С зростання швидкості становить близько 25 % за будь-якого потенціалу. Це вказує на те, що на певні стадії загального процесу температура впливає порізному. Зокрема, зі зростанням температури поверхні адсорбція на міді лігандів зменшується, а швидкість відводу продуктів реакції - збільшується. Незважаючи на це, сумарно у переході від 20 °С до 60° С процесу швидкість зростає вдвічі, ЩО доцільно використати на практиці.

Fig. 6. Anodic polarisation dependences measured in a solution of 1 M Na₂SO₄, 0.1M H₂M, pH = 2.0 at different temperatures, °C: 1 – 20, 2 – 30, 3 – 40, 4 – 60, 5 – 80

Рис. 6. Анодні поляризаційні залежності, виміряні в розчині 1 М Na₂SO₄, 0.1M H₂M, pH = 2.0 за різних температур, °C: 1 – 20, 2 – 30, 3 – 40, 4 – 60, 5 – 80

Одночасно з інтенсифікацією синтезу, тепловий режим забезпечує також кристалізаційне виділення продукту при охолодженні розчину.

Висновки

Обгрунтовано оптимальні умови електрохімічного синтезу малеїнатних комплексів Cu⁺, які забезпечують практично 100 % вихід за струмом цільового продукту: режим потенціостатичний, потенціал анода 0.1 В відносно хлоридносрібного електрода порівняння, C(H₂M) = 0.1 M (pH = 2), t° = 60 °C.

Спектрофотометрично, у поєднанні з квантово-хімічним моделюванням спектрів поглинання електромагнітного випроміню-

References

- [1] Qi, Y.Y., Gan, Q., Liu, Y.X., Xiong, Y.H., Mao, Z.W., Le, X.Y. (2018). Two new Cu (II) dipeptide complexes based on 5-methyl-2-(2'-pyridyl) benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism. *European Journal of Medicinal Chemistr*; 154, 220– 232. https://doi.org/10.1016/j.ejmech.2018.05.023
- [2] Shoair, A. F., El-Bindary, A. A., El-Ghamaz, N. A., Rezk, G. N. (2018). Synthesis, characterization, DNA binding and antitumor activities of Cu (II) complexes. *Journal of Molecular Liquids*, 269, 619–638. https://doi.org/10.1016/j.molliq.2018.08.075
- [3] Qi J., Yao Q., Tian L., Wang Y., (2018). Piperidylthiosemicarbazones Cu (II) complexes with a high anticancer activity by catalyzing hydrogen peroxide to degrade DNA and promote apoptosis. *European Journal of Medicinal Chemistry*, 158, 853– 862. <u>https://doi.org/10.1016/j.ejmech.2018.09.034</u>
- [4] Kasare, M. S., Dhavan, P. P., Jadhav, B. L., Pawar, S. D. (2019). In-vitro antibacterial activity of Ni (II), Cu (II), and Zn (II) complexes incorporating new azoazomethine ligand possessing excellent antioxidant, anti-inflammatory activity and protective effect of free radicals against plasmid DNA. Synthetic Communications, 49(23), 3311–3323. https://doi.org/10.1080/00397911.2019.1663213

вання різноманітними комплексними структурами, визначено склад отриманого продукту: [Cu⁺(H₂O)₃(HM⁻)].

У якості діагностичного критерію для ідентифікації природи комплексу обрано різницю довжин хвиль поглинання світла по π -зв'язку Cu⁺ з sp²-гібридним атомом Карбону вінільного фрагмента малеїнат-йона (область 400 нм) та σ -зв`язку Cu⁺ з іонізованою карбоксильною групою (область 300 нм).

Для кількісного аналізу робочого розчину на вміст малеїнатних π-комплексів Сu⁺ запропоновано використовувати A, Cзалежність, виміряну за 360 нм.

- [5] Azam, M, Al-Resayes, S. I., Wabaidur, S. M., Altaf, M., Chaurasia, B. (2018). Synthesis, structural characterization and antimicrobial activity of Cu (II) and Fe (III) complexes incorporating azo-azomethine ligand. *Molecules*, 223(4), 813. https://doi.org/10.3390/molecules23040813
- [6] Balakrishnan, S., Duraisamy, S., Kasi, M, Kandasamy, S., Sarkar, R. (2019) Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands. *Heliyon*, 5(5), e01687.<u>https://doi.org/10.1016/j.heliyon.2019.e016</u> 87
- [7] Nazirkar, B., Mandewale, M., Yamgar, R. (2019). Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5aminobenzofuran-2-carboxylate Schiff base ligands. *Journal of Taibah University for Science*, 13(1), 440– 449.

https://doi.org/10.1080/16583655.2019.1592316

- [8] Justina, M.I., Olukemi, B.A., Sunday, O. (2018). Study on "Synthesis, Characterization of Nanosized Copper (II) Complex and its Antimicrobial Activities". *ChemXpress*, 11(2), 136.
- [9] Zhang, Z., Wang, H., Wang, Q., Yan, M., Wang, H.. (2016). Anticancer activity and computational modeling of ternary copper (II) complexes with 3indolecarboxylic acid and 1, 10-phenanthroline.

International Journal of Oncology, 49(2), 691–699. https://doi.org/10.3892/ijo.2016.3542

- [10] Hussain, A., AlAjmi, M.F., Rehman, M.T., Amir, S., Husain, F.M. Alsalme A., Siduqui M.A., AlKhedhairy A.A., Khan R.A.. (2019). Copper (II) complexes as potential anticancer and Nonsteroidal antiinflammatory agents: In vitro and in vivo studies. Scientific Reports, 9(1), 1-7.
- [11] Wehbe, M., Lo, C., Leung, A.W., Dragowska, W.H., Ryan, G.M., Bally, M. B. (2017). Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity of platinum regardless sensitivity status. Investigational New Drugs, 35(6), 682-690. https://doi.org/10.1007/s10637-017-0488-2
- [12] Chakraborty, A., Dash, S.P., Panda, A.K, Acharyya, R., Biswas, A., Mukhopadhyay, S., Bhutia, S. K., Crochet, A. (2015). Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu (I/II) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Transactions, 44(13), 6140-6157. https://doi.org/10.1039/C4DT03764B
- [13] Balakrishna, M.S., Suresh, D., Rai, A., Mague, J.T., Panda, D. (2010). Dinuclear copper (I) complexes containing cyclodiphosphazane derivatives and pyridyl ligands: synthesis, structural studies, and antiproliferative activity toward human cervical and breast cancer cells. Inorganic Chemistry, 49(19), 8790-8801. https://doi.org/10.1021/ic100944d
- [14] El-Boraey, H.A. (2012) Coordination behavior of tetraaza [N4] ligand towards Co (II), Ni (II), Cu(II), Cu (I) and Pd (II) complexes: synthesis, spectroscopic characterization and anticancer activity. Part A: Spectrochimica Acta Molecular and Biomolecular Spectroscopy, 97, 255–262. https://doi.org/10.1016/j.saa.2012.05.077
- [15] González-Ballesteros N, Pérez-Álvarez D, Rodríguez-Argüelles M.C, Henriques M.S, Paixão J.A, Prado-López, S. (2016). Synthesis, spectral characterization and Xray crystallographic study of new copper (I) complexes. Antitumor activity in colon cancer. Polyhedron, 119, 112-119. https://doi.org/10.1016/j.poly.2016.08.023
- Vargaluyk, V. F., Polonskyy, V. A., Sklyar T.V., Stets [16] N.V., Lahuta, O. V. (2023). Physici-chemical and bactericidal properties of copper-containing composites based on maleinate complexes Cu+. Journal of Chemistry and Technologies, 31(2), 208-215.
 - http://dx.doi.org/10.15421/jchemtech.v31i2.275070
- [17] Slyvka, Yu. (2014). Template synthesis of Cu[4({C₃H₅-NHC(S)N- $_2$)Cl₂(py)₄] π -complex and its crystal construction. Visnyk Lviv University. Series Chemistry, 55(1), 115-123.
- [18] Vargalyuk, V. F., Polonskyy, V.A., Osokin, Y.S., Skok, A. Y. (2020). Influence of maleic acid on the composition and structure of organocopper dispersions obtained by chemical and electrochemical reduction of Cu2+ ions Journal of Chemistry and Technologies, 28(3), 231-241. https://doi.org/10.15421/082025
- [19] Pavlyuk, O., Goreshnik, E. (2019). Synthesis and crystall structure of mixed halide Cu(I) complexses with 1,3-benzimdazolone. Visnyk of the Lviv University. Series Chemistry, 60(1), 170-178. https://doi.org/10.30970/vch.6001.170
- [20] Slyvka, Yu.I., Fedorchuk, A.A., Pokhodylo, N.T., Lis, T., Kityk, I.V., Mys'kiv, M.G. (2018). A Novel Copper (I) Sulfamate π -Complex Based on the 5-(Allylthio)-1-

(3,5-dimethylphenyl)-1H-tetrazole Ligand: Alternating-current Electrochemical Crystalliza-tion, DFT Calculations, Structural and NLO Properties Studies. Polyhedron, 147, 86-93. https://doi.org/10.1016/j.poly.2018.03.015

- Luk'yanov, M., Slyvka, Yu., Ardan, B., Mys'kiv, M. [21] (2018). Synthesis and crystal structure of copper(I) sulfamate π -complex with 5-methyl-N-(Allyl)-1,3,4thiadiazol-2-amine of $[Cu_2(C_6H_{10}N_3S_2)_2(NH_2SO_3)_2]$ composition. Visnyk of the Lviv University. Series Chemistry, 59(1), 157-163. http://dx.doi.org/10.30970/vch.5901.157
- Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A. (2021). [22] Electrochemical synthesis of Cu⁺ complexes with maleic acid. Electrochemistry of today: achievements, problems and prospects a collective monograph, 120http://doi:10.33609/978-966-8398-64-121. 3.01.2021.1-191
- [23] Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., Glushkov, V. N. (2019). Features of $(d\pi - p\pi)$ -binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solutions Journal of Chemistry and Technologies, 27, 148-157. http://dx.doi.org/10.15421/081916
- [24] Kurasova, Y. D., Vargaluyk, V. F., Polonskyy, V. A. (2022). Ouantum chemical modeling of aquachlorocomplexes of Cu⁺ with acrylic, maleic and fumaric acids Journal of Chemistry and Technologies, 30(4), 530-536.

http://dx.doi.org/10.15421/jchemtech.v30i4.263280

- [25] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, К., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, D. J. (2010). Fox Gaussian 09, Revision C. 01. Gaussian Inc.
- [26] Stewart, J. J. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular modeling, 13, 1173-1213. https://doi.org/10.1007/s00894-007-0233-4
- Rezac, J., Fanfrlik, J., Salahub, D., Hobza, P. (2009). [27] Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. Journal of Chemical Theorv and Computation, 5(7), 1749-1760. https://doi.org/10.1021/ct9000922
- Vargaluyk, V. F., Polonskyy, V. A., Osokin, Y. S., [28] Lahuta, O. V. (2021). Syntesis of copper composites containing maleic acid. Journal of Chemistry and Technologies, 29(3), 400-409. https://doi.org/10.15421/jchemtech.v29i3.241965.