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Abstract 
The paper describes a mathematical model of gas chromatography in terms of a set concentration waves passing 
through an adsorption column. An analytical solution is derived for the passage of concentration eigenwaves through 
the entire adsorption column. This makes it possible to find analytical solutions for an arbitrarily shaped 
concentration signal passing through the adsorption column. To do this, it is necessary to decompose the input 
concentration signal into a set of adsorption column eigenwaves and to obtain an analytical solution for each of the 
concentration eigenwaves at the exit of that column. All of the concentration eigenwave solutions are then combined. 
This is the solution for passing an arbitrary concentration signal through the adsorption column. This approach is 
suitable for any periodic adsorption process and allows for the variable concentration of components at the entrance 
to the adsorption layer. The wave approach to the analysis of chromatographic column processes provides an 
explanation for the empirical Van Deemter equations used in the practice of gas chromatography.  
Key words: adsorption; gas chromatography; van Deemter equation; concentration waves. 

 

КОНЦЕПТУАЛЬНО НОВА МОДЕЛЬ ГАЗОВОЇ ХРОМАТОГРАФІЇ 
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Анотація 
У статті описано математичну модель газової хроматографії як набір концентраційних хвиль, що проходять 
через адсорбційну колонку. Отримано аналітичне рішення для проходження власних концентраційних хвиль 
через адсорбційну колонку. Це дозволяє знаходити аналітичні рішення для концентраційного сигналу 
довільної форми, що проходить через адсорбційну колонку. Для цього необхідно розкласти вхідний 
концентраційний сигнал на набір власних хвиль конкретної адсорбційної колонки та отримати рішення для 
кожної з цих власних хвиль на виході з колонки. Потім усі рішення для власних концентраційних хвиль 
об’єднуються. Це і є рішенням для проходження концентраційного сигналу довільної форми через 
адсорбційну колонку. Такий підхід може бути використаний для будь-якого періодичного адсорбційного 
процесу, та дає змогу врахувати змінну концентрацію компонентів на вході в адсорбційний шар. Хвильовий 
підхід до аналізу процесів хроматографічної колонки дає пояснення емпіричних рівнянь Ван Деемтера, які 
використовуються в практиці газової хроматографії.  
Ключові слова: адсорбція; хвиля; газова хроматографія; рівняння ван Деемтера. 
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Introduction  
Chromatography is a physical separation 

method in which the components to be separated 
are distributed between two phases, one of which 
is stationary while the other mobile phase moves 
in a specific direction [1–3]. 

The various chromatographic methods are 
named after the physical state of the mobile phase. 
For example, in gas chromatography (GC) the 
mobile phase is a gas, and in liquid 
chromatography the mobile phase is a liquid. A 
subdivision is made according to the state of the 
stationary phase. If the stationary phase is a solid, 
the GC technique is called gas-solid 
chromatography; if it is a liquid, the technique is 
called gas-liquid chromatography.  

This paper discusses only gas-solid 
chromatography (GSC).  

Separation of components using a gas 
chromatography process with a solid stationary 
phase based on a different adsorption value of 
separated substances.  

The mobile phase in gas chromatography is an 
inert gas, usually helium, but sometimes nitrogen 
or argon. This mobile phase is often referred to as 
the carrier gas.  

A schematic diagram of a gas chromatograph is 
shown in Figure 1. The major parts of a gas 
chromatograph include: carrier gas cylinder, flow 
controller, injector, chromatographic column, 

detector, and data system.  
Chromatographic analysis begins with the 

rapid injection of a sample mixture into a stream 
of carrier gas. As it is transported through the 
chromatographic column, different components 
migrate through the column at different rates by 
interacting differently with the adsorbent in the 
column. As a result, each component is retained in 
the column for a different amount of time, known 
as the retention time. Different retention times 
cause the components to pass separately through 
the column outlet. 

The initial gas mixture separates into a series of 
binary mixtures, one component of which is a 
carrier gas and the other component is from the 
mixture being analyzed. When these binary 
mixtures pass through a detector, it produces a 
response that indicates a change in the properties 
of the gas mixture.  

The way to observe a separation result is 
through a chromatogram, which is a plot of the 
detector response versus the time that has elapsed 
since the injection of a mixture being tested. 

The working principle of the gas 
chromatograph is based on the fact that the 
retention time of each component is an individual 
property of this component and does not depend 
on the composition of the analyzed mixture. 
Therefore, the peak corresponding to the 
substance will always be in its own place, if the 

Fig. 1. The schematic diagram of the gas chromatography apparatus 
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conditions of analysis are constant, regardless of 
the composition of the initial mixture.  

For quantitative analysis of a mixture the 
height or area of peaks in the obtained 
chromatogram is used. The height and area of 
chromatographic peaks are proportional to the 
concentration of components in a feed gas 
mixture.  

Despite the fact that gas chromatography is a 
widely used method, and it is rightly considered 
one of the most theoretically sound methods, the 
practice of gas chromatography allows putting a 
number of questions that are difficult to answer 
within the framework of existing theoretical 
concepts. The most obvious of these difficult 
questions is Why is the chromatographic 
separation better achieved at high temperature of 
the absorption column? 

It is well known that adsorption of gases 
increases with decreasing temperature of the 
adsorbent. If gas chromatography is based on 
multiple repetitions of adsorption and desorption 
of a component of a mixture, it would seem 
reasonable that separation of a mixture would be 
better at a lower temperature of the adsorption 
column. However, chromatographic separation 
processes are usually performed at elevated 
temperatures, usually around 100–200 °C. 

Sometimes a higher temperature of the 
chromatographic column required that all 

components of the mixture be in the gaseous state. 
However, even in a case where the boiling 
temperature of all components of the mixture was 
significantly below room temperature, separation 
of this mixture was still performed at elevated 
temperature [1–4].  

On the other hand, it is known that purification 
of gases by adsorption is always carried out at 
lower temperatures, if possible.  

The incompleteness of modern concepts of gas 
chromatography is illustrated by the example of 
temperature-programmed gas chromatography. 
The application of temperature programming is a 
very adequate way to speed up a gas 
chromatographic analysis. This technique is also 
used for the analysis of gas mixtures with very 
different properties [4–6].  

Figure 2 shows a typical view of 
chromatograms obtained at constant and variable 
temperatures of the adsorption column. It is 
clearly visible that peaks at the beginning of the 
chromatogram are completely separated from 
each other at low column temperatures, but peaks 
corresponding to the different components at the 
end of the chromatogram are broadened at this 
temperature. Conversely, the peaks of the 
chromatogram become sharper when the 
temperature of the adsorption column is 
increased, but the distance between adjacent 
peaks decreases.  

Temperature 

Permanent low temperature 
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Variable temperature 
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Fig. 2. The typical form of gas chromatograms at a constant and a variable temperature of 
adsorption column 
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If in the act of separation the column 
temperature is gradually increased from 
minimum to maximum, the shape of the 
chromatogram will be improved in terms of 
mixtures quantitative and qualitative analysis.  

Gas adsorption increases with decreasing 
temperature. Therefore, the increasing distance 
between concentration peaks at low temperature 
is well explained within the framework of existing 
ideas about physical mechanisms of gas 
chromatography.  

However, the sharp concentration peaks seem 
to be related to another factor that increases with 
increasing temperature. It can be assumed that 
this factor is the longitudinal diffusion of a 
component in a carrier gas, since it increases with 
increasing temperature, but the effect of diffusion 
usually explains the reverse process of broadening 
of concentration peaks at the column outlet. 

The influence of this factor on the process of 
gas chromatography is so significant that the 
separation of gas mixtures at their 
chromatographic analysis is practically always 
carried out at increased temperature, despite the 
fact that in this case the adsorption is significantly 
reduced.  

It follows that our understanding of separation 
mechanisms in gas chromatography is not 
complete and needs to be clarified. 

 

Model of gas chromatography 
Gas adsorption in porous adsorbent. Now we 

consider the adsorption of a component dissolved 
in the carrier gas. 

We will use the following physical 

interpretation of the component spreading in a 
microporous adsorbent when constructing the 
mathematical model of the adsorption process 
[7; 8]. 

Carrier gas mixed with the component we want 
to adsorb is filtered through a porous adsorbent. 
Near the tangential points of the adsorbent grains 
are the stagnant zones where the carrier gas is 
almost stationary. 

The gas flow passes through an array of holes 
in the empty spaces between the adsorbent grains. 

Thus, the entire space filled with adsorbent can 
be divided into two zones: a stationary frame 
consisting of adsorbent grains and adjacent 
stagnant zones, and the system of holes and voids 
in which the carrier gas with the dissolved 
component moves. 

The component in the stationary frame spreads 
mainly due to its molecular diffusion in the gas, 
filling the micropores in the adsorbent grains and 
the stagnant zones around them. 

The component spreads by convection in the 
system, which consists of randomly arranged 
holes and cavities in the stationary frame. 

Thus, the adsorbed component in the 
stationary frame and the gas flow in the hole 
system move along paths that are essentially non-
intersecting (see Figure 3). The interactions 
between these flows occur along the boundary of 
the hole system in which the carrier gas is moving. 

This physical pattern of gas propagation 
through a porous adsorbent bed differs 
significantly from the conventional scheme of 
mathematical description of adsorption, provided 
for example in [9–11]. The traditional approach 

Fig. 3. The component spreading pattern in adsorbent bed. 
1 is the motion of the diffusing component in a stationary frame;  

2 is the carrier gas line of current 
 

 



797 
 

 Journal of Chemistry and Technologies, 2024, 32(3), 793-805 

 

considers the diffusion of the adsorbed 
component within the moving carrier gas. 

In the proposed formulation of this problem, 
the removal of a component from a moving carrier 
gas into a stationary frame acts as the absorption 
of this component in the problem of molecular 
diffusion in the pores of the adsorbent. 

Convection of this component in channels with 
moving carrier gas is described by the separate 
equation. 

That's why the equation of the molecular 
diffusion in the stationary frame can be written as 
follows: 

  ,
),(

),(),(
),(

2

2















 xC
KxCgxCF

x

xC
D GE

  (1) 

where C(x,τ) is actual volumetric concentration of 
the component in the stationary frame (gas in the 
pores of adsorbent and stagnant areas around the 
adsorbent particles), [m3/m3]; Сg(x,τ)  is an actual 
volumetric concentration of the component in the 
moving carrier gas, [m3/m3];  is the kinetic 
coefficient of mass transfer between the gas in the 
stationary frame and the moving carrier gas, 
[m3/(s· m2)]; F  is the specific contact surface of the 
stationary frame and the moving carrier gas, 
[m2/m3]; DE is the equivalent value of the diffusion 
coefficient in the stationary frame, is equal to the 
product of the diffusion coefficient in the carrier 
gas and the relative value of the effective pore 

cross section in the stationary frame, [m2/s]; KG is 
the nondimensional Henry constant for the 
adsorption isotherm. 

It is noticed that the diffusion equation, 
recorded for the stationary frame, included the 
Henry constant. This means that the proposed 
mathematical model of the adsorption of the gas is 
a linear model. The isotherm used for this 
adsorption model is known as Henry's adsorption 
isotherm. 

The material balance of the component in the 
elementary volume of carrier gas, moving inside 
the adsorbtion column, can be written in the form 
of another differential equation: 

 

  ;0
),(

),(),( 
dx

xdCg
GxCgxCF


       (2) 

 

where G is a volumetric flow rate of carrier gas 
related to a unit section of the adsorbtion column, 
[m3/s]. 

These two equations, when considered 
together, make it possible to find the component 
concentration distribution in the moving carrier 
gas and in stationary frame [12–14]. 

Wave Mathematical model of Adsorption. We 
consider the passage of the component through 

an adsorption column of width h.  
We assume that the volumetric concentration 

of the component in the carrier gas varies 
harmonically in the inlet section of the adsorption 
column. This is shown in Figure 4. 

The steady adiabatic adsorption process in the 
thermally insulated adsorbent bed is considered 
in this paper. 

If we consider a stationary movement of a 
concentration wave through the adsorption 
column, according to Prigogine's theorem, the 
entropy production in this layer should reach its 
minimum [15]. 

Since the adsorption process, which is 
accompanied by heat effect and heat transfer, is 
basically an irreversible process, the heat that has 
been given in the adsorption process can never be 
completely given back in the desorption process.  

Therefore, the steady-state process in which 

the mass of the adsorbed substance is periodically 
changed will, by definition, be essentially 
irreversible. It follows that the minimum entropy 
produced in the steady-state movement of the 
concentration wave will be achieved when the 
mass of the adsorbed component remains 
unchanged. Therefore, in this mathematical 
model, the convention of constancy of the mass of 
the component adsorbed in the adsorbent bed is 
used. 

Constant component weight is achieved only 
for the oscillation frequencies at which the 
instantaneous values of component concentration 
at the adsorbtion column inlet are equal to the 
instantaneous value of its concentration at the 
column outlet. This is only possible if the 
wavelength of the concentration in the stationary 
frame is equal to the thickness of the adsorbtion 
column.  

Following the conventional terminology, we 
call these oscillations of the concentration  
eigenmodes of this adsorption column, and the 
frequency of these oscillations  eigenfrequencies 
of the adsorption column. 

In the considered mathematical model, it is also 
assumed that the gas filling the pores of the 
adsorbent and the gas adsorbed on its surface are 
in thermodynamic equilibrium. 
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The initial condition of equation (1) for this 
physical interpretation of the dispersion of the 
component in the porous adsorbent can be 

written as: 
     

)()0,( xСoxС  .    (3) 

Neumann boundary condition is: 

0
),0(






x

С 
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

x

hС 
.  (4) 

The physical significance of these boundary 
conditions is that the end surfaces of the adsorbed 
column are not absorbed and do not leave the 
component of interest.  

Mass transfer occurs only between a moving 
carrier gas and the stationary frame of the 
adsorbtion column. 

We write equation (1) in operator form (S is the 

operator used to differentiate in time) [15]: 

  ).(),(),(),(
),(

2

2

xCosxCsKsxCgsxCF
x

sxC
D GE 






     
(5) 

The boundary conditions can also be written in the operator form:  
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We construct the finite integral cosine transform for the coordinate x: 
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The inversion formula is:  
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Where 
2

k  is the square of the norm of the integral transform kernel: 
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The last expression is the tabular integral: 
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Let the image of the expression for the second derivative of the component concentration be 
converted by the integration by parts formula: 
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Let us find the eigenvalues μk of the integral transform to ensure that the boundary conditions are 
satisfied. 

The boundary condition at х=0: 

.0
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Therefore, the boundary condition at х=0 for a cosine transform is automatically applied. 

The boundary condition at х=h: 
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Find the eigenvalues of the integral transform that satisfy the condition: 
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Then dividing right and left sides of this equation to  kcos , we obtain: 
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By comparison with the second boundary condition, we obtain the formula for finding the 

eigenvalues:   .;0 ktg kk        ...2,1,0k       (16) 

Taking this into account, we obtain an expression for the integral transform: 
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The diffusion equation in the stationary frame (1) takes the form, after the cosine transform, of the 
following equation:
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In this way, we can find the image of the function that describes the concentration of the component 

in a stationary frame:
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For simplicity, we choose zero value of the initial temperature distribution:   0)( xCo . 

With this in mind, we obtain: 
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For further investigation, we specified the 

wave nature of the concentration oscillation in the 
carrier gas. This means that if we know the period 

of the oscillations, we can find the length of the 
concentration eigenwave by knowing the width of 
the adsorbtion column: 
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where T is the period of oscillations in the main 
concentration wave, [s]. Ak is the amplitude of the 
k-th harmonic of the concentration oscillations, 
[m3/m3]. 

We construct the finite cosine integral 

transformation in coordinate x, considering that 
the concentration wavelengths are multiples of 
the adsorption column length: 
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To find these integrals we use the frequency selection rule: 
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With this in mind:
2
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Next, convert this expression to the operator form using the differentiation operator with respect to 
time: 
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Substituting this expression into equation (21), after some elementary transformations, we obtain 
the expression that can easily be returned to its original form: 
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Let it be transformed by the original. The 
resulting expression is the sum of two terms.  

The first term is an inverse exponential 
function over time. The stationary value of this 

function is zero. The second summand of this 
original is the sum of the sine and cosine.  

For simplicity, we introduce the following 
notation: 
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With conside ration of this, the original is: 
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Thus, we find a simple solution to the diffusion equation as its eigenwave passes through the 
adsorbent bed: 
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where 













ck

sk
k

В

В
arctg .           (33)

The physical meaning of this formula is 
obvious. The oscillation amplitude of the 

component concentration in a stationary frame is 
proportional to the amplitude of its oscillation in a 
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carrier gas (at the entrance of the adsorbtion 
column) multiplied by a coefficient that depends 
on the carrier gas velocity and the adsorbent 
properties. 

The phase of concentration oscillations in a 
stationary frame lags behind the phase of 
oscillation in a carrier gas at the entrance of the 
adsorbtion column. 

In other words, at the same carrier gas velocity, 
the velocity of the concentration wave in the 
adsorbtion column is less than the velocity of the 
concentration wave out of the adsorbent bed. 
Moreover, this velocity difference is influenced by 
many factors, including the Henry's law constant 
for gas adsorption. It is easy to verify that the 
larger the value of Henry's constant, the larger the 
value of Bsk and therefore more phase shift, and is 
less the velocity of a concentration wave in the 
adsorbtion column. 

The mass balance of a component in an 
elementary volume of carrier gas moving inside 
the adsorption column can be written in the form 

of a first-order differential equation (2). The 
physical meaning of this equation is that the 
change of concentration of the gas moving in the 
pores occurs only by mass exchange with the gas 
in a stationary frame. 

We search for the solutions of this equation for 
the k-th wave of the adsorbtion column: 
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The component from the carrier gas can only go 
into the stationary frame; and vice versa, the 
component from the stationary frame can only go 
into the carrier gas. It follows that if the 
concentration of the component in a carrier gas 
decreases, it can only increase in the stationary 
frame, and vice versa, if the concentration of the 
component in a stationary frame decreases, it 
should increase in a carrier gas. 

To satisfy this condition, represent the 
concentration waves in a stationary frame as a 
function of sine:
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For functions of the selected type, the mass balance equation (2) takes the form: 
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We transform the last expression into a 
form suitable for analysis by grouping the similar 

terms and using the formula of difference 
identities for sine: 
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The above expression can be interpreted as a 
spatial delay between the concentration wave in 
the carrier gas and the concentration wave in the 
stationary frame.  

The tangent of the phase angle between the 
concentration of the component in a stationary 
frame and in a carrier, gas is equal to: 
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The main difference between concentration 
waves and sound or electromagnetic waves is that 
in the case of superposition of ordinary waves, 
their amplitudes add up. In the case of 
superposition of concentration waves, a 
completely different law applies. 

When two streams are combined or mixed, the 
concentration of a component in the combined 
stream is determined as the weighted average of 
its concentrations in the two mixed streams. 

Let's assume that when we decompose a 
periodically changing concentration signal 
entering the adsorption column into a Fourier 
series, each harmonic corresponds to a portion of 
the carrier gas flow, and these portions of the 
carrier gas flow are the same for all harmonics. 
Then the amplitude of the concentration 
fluctuations after mixing two flows can be found 
by the formula 

222

nknk ВВВВ



   (39) 

Therefore, to obtain the correct value of the 
amplitude of the concentration wave after 
summing the two harmonics, it is sufficient to add 
the concentration waves whose amplitudes are 
equal to half of their amplitudes before mixing.  

Another way to explain how two appears in the 
denominator of Formula (39) is as follows. In the 
steady-state motion of a concentration wave, 
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multiple component exchanges occur between the 
carrier gas and the adsorbent. As a result, the 
amplitudes of the component mass oscillations in 
the carrier gas and in the adsorbent are identical. 
It follows that the amplitude of the natural 
oscillations of the component concentration at the 

exit from the adsorbtion column will be equal to 
half of the oscillation amplitude at the entrance to 
this adsorbtion column.  

Considering this, we obtain a relatively simple 
solution for the concentration eigenwaves exiting 
the adsorptive column: 
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The physical sense of this formula is obvious: 
for eigenwaves propagating through the 
adsorbent bed, their frequency remains the same 
and the phase of the wave is delayed in time by an 
angle φk and in space by the angle ψk. 
Furthermore, the phase angles are different for 
different concentration waves. 

For the mathematical model considered, it is 
essential that the system of eigenfunctions is 
complete. This means that any periodic sequence 
of arbitrarily shaped pulses can be expanded in a 
finite series of these eigenfunctions with any 
degree of accuracy. This position has been proven 
by mathematical analysis. 

Thus, any concentration signal entering the 
adsorption column can be decomposed into the 
finite series of eigenfrequencies of that column. 
Furthermore, after separately passing through the 
adsorption column, we can combine these 
eigenmodes back into the output concentration 
signal at the column outlet. 

Thus, having the analytical solution for the set 
of eigenfrequencies in the adsorption column, we 
can relatively easily obtain a solution for any 
periodic sequence of concentration pulses. 

 

Results of calculations 
To test the capabilities of the resulting 

mathematical model, previously published 
experimental data on the chromatographic 
separation of hydrogen isotopes were used. 

Chromatographic isotope separation is one of 
the most promising methods for solving this 
important and complex problem [17-25]. 

As an example of these solutions, we calculate 
the passage of a pulse of a hydrogen and 
deuterium mixture through an adsorption column 
filled with zeolite 5a.  

Helium is chosen as the carrier gas. The 
pressure in the adsorption column is assumed to 
be 1.0 bar. The Henry constant of zeolite 5a for the 
adsorption of hydrogen and deuterium is taken 
from and is assumed to be 1.0 m3/(m3·bar) for 
hydrogen and 1.0 m3/(m3·bar) for deuterium. The 
temperature of the adsorption column is taken as 
in experimental work [] -160°C. The formulas 
defining the mass transfer coefficient are taken 

from [26].  
The adsorption column length is assumed to be 

2.0 m, the carrier gas velocity in the column is 
assumed to be 60 mL/min. The Gaussian curve 
shape is given by the input concentration signal. 

First, decompose the Gaussian impulse 
response of the nitrogen partial pressure into a 
Fourier series. To determine the expansion 
coefficients, we use well-known mathematical 
analysis formulas: 
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where f(x) is a function expanded in Fourier 
series. 

Thus, since we have a sine and cosine sum 
representation of an input concentration signal, 
we can easily predict the steady-state output 
concentration signal. To do this, we use equations 
(32; 33) and (38; 39) to find the Fourier series for 
the hydrogen and deuterium concentrations in the 
stationary frame and in the carrier gas leaving the 
adsorption column. 

In this example, the calculation is performed 
for the first two hundred members of the Fourier 
series. The terminating effects of the Fourier 
series can thus be eliminated. 

Figure 5 shows the calculated curves for the 
non-adsorptive gas concentration in the outlet of 
the adsorption column 1, and in the hydrogen 2 
and deuterium 3 pulses.  

As expected, during the passage of the 
concentration pulse through the adsorption 
column, the phases of individual harmonics of the 
concentration signal are shifted. This results in a 
delay of the concentration signal in time and 
space.  

The initial data for the calculation are the same 
as in the article devoted to the chromatographic 
separation of hydrogen isotopes on a column of 2 
mm diameter and 3 m length filled with zeolite 5a. 
In the experiment, the hydrogen retention time at 
a carrier gas velocity of 60 ml/min was 42.0 
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minutes, and the deuterium retention time was 
63.2 minutes. The experiment was performed at a 
constant column temperature of −160°C [27]. 

The calculation gave a hydrogen retention time 
of 46 minutes and a deuterium retention time of 
66 minutes. 

The differences obtained are easily explained 
by the error in determining the adsorption of 
zeolite 5a at low temperatures in the calculations. 

 

Discussion 
Analysis of the mathematical model of gas 

chromatography 
To analyze the solutions obtained using the 

wave model, we start from the concentration wave 
of the non-sorbent component, which has the 
same period and initial phase of oscillation as the 
component under study. This approach is 
generally accepted in analytical gas 
chromatography. 

The wave model of gas chromatography 
assumes that the carrier gas, like the unsorbed 
component, does not interact with the adsorbent. 
Therefore, the velocity of the unsorbed solute is 
equal to the velocity of the carrier gas. 

The concentration wavelength of the 
unabsorbed component can be found as the 
product of the carrier gas velocity and the period 
of the concentration wave for the unabsorbed 
component. 

It is well known that the height of the 
equivalent theoretical plate and therefore the 
separation efficiency of the chromatographic 
column depends on the carrier gas velocity. The 
nature of this dependence is such that there is an 

optimum carrier gas velocity at which a minimum 
equivalent theoretical plate height or minimum 
peak broadening is achieved. 

The height equivalent to the theoretical plate 
for a packed column and the carrier gas velocity 
are related by the empirical Van Deemter 
equation, which has the form [6]: 

CV
V

B
Ah DT  ,          (42) 

where AD, B and C are constants; V velocity of a 
carrier gas. 

Since optimal values of the carrier gas velocity 
are important for chromatography, the literature 
gives various hypotheses about the physical 
meaning of the constants AD, B and C, as well as 
recommendations for determining their value. 

A minimum height equivalent to a theoretical 
plate obtained by the van Deemter equation, 
explained by the fact that this equation is the sum 
of a decreasing hyperbolic function and an 
increasing straight line. 

Figure 6 shows graphs of the phase shift of the 
concentration eigenwave in the stationary frame 
(φ1), in the carrier gas, exiting the 
chromatography column (ψ1), and the total phase 
shift angle (φ1+ψ1) as functions of the velocity of 
the carrier gas.  

It is clear that the graph of the total phase shift 
for the concentration wave is similar to the 
function which is the sum of hyperbole and a 
straight line.  

The expression for the phase shift of the 
eigenwaves in the stationary frame, after 
simplification, takes the form: 
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Since the kinetic mass transfer coefficient β for 
laminar flow is independent of the carrier gas 
velocity, the denominator in this expression is a 
constant. The only variable in the numerator is a 
period of the main eigenmode T, which is inversely 
proportional to the carrier gas velocity. 

Therefore, the phase shift angle of a 
concentration wave in the stationary frame is the 
arctangent function of the square of the carrier gas 
velocity: 

 2Vconstarctan  .     (44) 

The spatial phase shift at the output of a 
chromatographic column is defined by the 
expression: 
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This conclusion is that the spatial phase shift is 
a decreasing function of the carrier gas velocity, 
like a hyperbola. 

The implication of this analysis is that the 
phase shifts in space and time with respect to the 
velocity of the carrier gas are decreasing and 
increasing functions that have a minimum.  

As shown in Figure 6 (gray area), for small 
values of the argument, the resulting function is 
well approximated by the van Deemter equation, 
which is the sum of the hyperbola and a straight 
line. 
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The summary phase angle (φi+ψi) for each 
eigenmode of the concentration signal finally 
defines the shape of the concentration pulse 
leaving the chromatography column. The smaller 
the phase shift angle between individual 
eigenmodes, the less blurred the peaks on the gas 
chromatogram, and therefore is less height 
equivalent to a theoretical plate. 

Thus, the proposed mathematical model gives 
results that are in good agreement with the 
totality of experience in analytical gas 
chromatography. 

There are parallels between the movement of 
concentration waves and the propagation of 
various natural waves, such as a light. 

The motion of concentration waves in the 
adsorbent is similar to the motion of light waves in 
a transparent medium. 

Light waves are slowed down when they pass 
through a transparent medium. This effect 
depends on a nature of this medium. Similarly, a 
slowing down of concentration waves depends on 
a nature of the adsorbent.  

The deceleration of light waves also depends 
on their frequency. Spectral analysis is based on 
this property of light. Due to different speeds of 
light waves in a transparent medium, a narrow 
light beam, in which mixed radiation from 
different atoms, decomposed into a spectrum. 

Similarly, due to different speed of 
concentration waves of different substances, a 
short pulse of gas mixture passing through a 
chromatographic column stretching in a gas 
chromatogram. 

From this point of view, it is quite natural 
similarity between optical spectrum of gas 
mixtures and view of a chromatogram, obtained 
by gas chromatography. 

Similarly to the refraction of light waves, we 
could talk about the refraction of concentration 
waves in a chromatography column. 

Therefore, the wave approach to the 
consideration of gas chromatography is not only a 
new method of calculation, but it is the same kind 
of a new paradigm. 

 

Conclusion  
The mathematical model of wave adsorption 

produces reasonable results that well agred with 
empirical data to have accumulated in analytical 
gas chromatography. 

Wave approach to the analysis of periodic 
adsorption processes enables to beter 
understanding process of analytical gas 
chromatography. 

The mathematical model of wave absorption 
can improve methods of calculating the sorption 
dynamic for a broad class of batch action 
adsorption apparatus.
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