Journal of Chemistry and Technologies, 2025, 33(2), 319-325

Journal of Chemistry and Technologies

pISSN 2663-2934 (Print), ISSN 2663-2942 (Online).

journal homepage: <u>http://chemistry.dnu.dp.ua</u> editorial e-mail: chem.dnu@gmail.com

UDC 546.

Ag₂S-Ga₂S₃-PbS QUASI-TERNARY SYSTEM

Sharafat H. Mammadov¹ Rana A. Ismailova², Mushkunaz B. Gasanova² ¹Institute of Catalysis and Inorganic Chemistry named after academician M. F. Nagiyev of ANAS, Azerbaijan, AZ 1143, Baku, pr. H. Javid 113.

²Azerbaijan State Oil and Industry University, AZ 1010, Baku, Azadlig Avenue, 20 Received 19 December 2025; accepted 28 April 2025; available online 15 July 2025

Abstract

Multicomponent chalcogenides of copper and silver are scientifically and practically prospective materials, widely used in microelectronics. Thus, these materials posses unique properties such as optical, electrical, ferroelectric and ion conductivity. One of the urgent problems in the solar energy is the development of easily producable, environmentally friendly materials, capable of efficiently converting solar energy into electricity and other energy types. From this point of view, the search for chalcopyrite-structured compounds, such as AgGaS₂, CuINS₂ and PbInS₂, is of great importance. The synthesis of quaternary alloys was carried out in an evacuated quartz ampoule using presynthesized melts and high-purity elements at a temperature of 1100–1400 K. After melting the samples were gradually cooled down to 650–800 K at a rate of 10–15 degrees per hour, and then homogenization was carried out under the condition of 300–400 seconds. The state of equilibrium in the quasi-ternary Ag₂S-Ga₂S₃-PbS system has been studied for the first time using modern methods of physicochemical analysis. The study has found that the four sections of the quasi-ternary system are quasi-binary, and based on them, the quasi-ternary system is triangulated into five pseudo-ternary subsystems. It has been proved that in the ternary system a four-component compound AgPb₂GaS₄ is formed and there are limited solubility regions based on the initial components. *Keywords:* system; triangulation; pseudoternary; compound; eutectic.

КВАЗІПОТРІЙНА СИСТЕМА Ag₂S-Ga₂S₃-PbS

Шарафат Г. Мамедов¹, Рана А. Ісмаїлова², Мушкуназ Б. Гасанова² ¹Інститут каталізу та неорганічної хімії імені академіка М. Ф. Нагієва НАНА, Азербайджан, АZ 1143, Баку, пр. Джавида 113.

²Азербайджанський державний університет нафти і промисловості, АZ 1010, Баку, проспект Азадлик, 20

Анотація

Багатокомпонентні суміші халькогенідів міді та срібла є науково та практично перспективними матеріалами, які широко використовуються в мікроелектроніці. Ці матеріали мають унікальні властивості, такі як оптична, електрична, сегнетоелектрична та іонна провідність. Однією з актуальних проблем сонячної енергетики є розробка легко вироблюваних, екологічно чистих матеріалів, здатних ефективно перетворювати сонячну енергію в електричну та інші види енергії. З цієї точки зору пошук сполук зі структурою халькопіриту, таких як AgGaS₂, CuInS₂ та PbInS₂, має велике значення. Синтез четвертиних сплавів проводили у вакуумованій кварцовій ампулі з використанням попередньо синтезованих розплавів і елементів високої чистоти за температури 1100–1400 К. Після плавлення зразки поступово охолоджували до 650–800 К зі швидкістю 10–15 градусів на годину з наступною гомогенізацією в умовах 300–400 секунд. Вперше досліджено фазову рівновагу в квазіпотрійній системі Ag₂S-Ga₂S₃-PbS із застосуванням сучасних методів дослідження фізико-хімічного аналізу. В результаті дослідження встановлено, що чотири розділи квазіпотрійної системи є квазібінарними, і на їх основі квазіпотрійна система розбита на п'ять псевдопотрійних підсистем. Доведено, що потрійна система має обмежені зони розчинності на основі чотирикомпонентної сполуки складу AgPb₂GaS₄ та первинних компонентів.

Ключові слова: система; квазіпотрійна система; тріангуляція; псевдопотрійна система; сполука; евтектика.

*Corresponding author: e-mail: <u>chemminfo@gmail.com</u> © 2025 Oles Honchar Dnipro National University; doi: 10.15421/jchemtech.v33i2.318398

Introduction

Multicomponent chalcogenides of copper and silver are scientifically and practically prospective materials, widely used in microelectronics. Thus, these materials posses unique properties such as optical, electrical, ferroelectric and ion conductivity [1–9]. The search for new lessstudied quaternary chalcogenide semiconductos of copper and sulfur is one of the relevant issues both in semiconductor physics and solid state physics. One of the urgent problems in the solar energy is the development of easily productable, environmentally friendly materials, capable of efficiently converting solar energy into electricity and other energy types. From this point of view, the search for chalcopyrite-structured compounds, such as AgGaS₂, CuInS₂ and PbInS₂ is of great importance [10-14]. Searching for and obtaining promising materials with new functional properties, especially growingtheir high-purity mono crystals, as well as studying the temperature-composition dependence of the systems are crucial from relevant the technological point of view [15]. In this aspect, the study of Ag₂S-Ga₂S₃-PbS quasi-ternary system is highly relevant, it can contribute to the development of photosensitive luminescent materials.

Side systems (Ag₂S-PbS, Ag₂S-Ga₂S₃, PbS-Ga₂S₃) and initial components that make up the Ag₂S-Ga₂S₃-PbS quasi-ternary system have been studied sufficiently in literature sources [16–20].

The Ag₂S-PbS system is a quasi-binary section of the Ag₂S-Ga₂S₃-PbS quasi-ternary system and belongs to the simple eutectic type. The eutectic point coordinates are 26 mol% PbS and T = 870 K. Under the influence of lead sulfide, the temperature of $(Ag_2S)_I \leftrightarrow (Ag_2S)_{II}$ and $(Ag_2S)_{II} \leftrightarrow (Ag_2S)_{III}$ phase transitions decreases (with eutectoid character) and occurs at 735 and 451 K, respectively. Based on Ag₂S and PbS, 1.0 and 2 mol% solid solution regions are formed, respectively [16].

The Ag₂S-Ga₂S₃ system was thoroughly studied by the authors [17-20]. The researches have determined that the Ag₂S-Ga₂S₃ system is quasibinary and characterized by the formation of ternary thiogallate compounds: Ag₉GaS₆, AgGaS₂ and $Ag_2Ga_{20}S_{31}$ [19; 20]. Ag_9GaS_6 melts congruently at 1063 K, forms eutectic equilibria with Ag₂S and AgGaS₂: $L \leftrightarrows \alpha$ -Ag₂S+Ag₉GaS₆ and $L \leftrightarrows Ag_9GaS_6 + AgGaS_2$. The eutectic point coordinates are: 5 mol% Ga₂S₃ and T=1018 K, 15 mol% Ga_2S_3 and T = 1038 K. High-temperature modification of Ag₉GaS₆ compound crystallizes in a cubic structure (a = $10.798A^{0}$), whereas lowtemperature modification crystallizes in an orthorhombic structure (a = 10.777, b = 7.706, c = $7.605 A^{0}$) [19].

The AgGaS₂ compound also melts without decomposition at 1268 K and crystallizes in a hexagonal syngony (a = 5.7544, c = 10.299 A⁰, space group I42d). The third compound in the system Ag₂Ga₂₀S₃₁ is formed by the peritectic reaction at 1268K L+Ga₂S₃ \Rightarrow Ag₂Ga₂₀S₃₁ and together with AgGaS₂ creates the eutectic at 1188 K [20].

The PbS-Ga₂S₃ system represents a quasibinary section of the Pb-Ga-S ternary system and is characterized by the formation of PbGa₂S₄ and Pb₂Ga₂S₅ compounds. Both compounds melt congruently at 1163 and 1063 K, respectively. Both ternary compounds crystallize in the orthorhombic system.

Experimental part

The synthesis of quaternary alloys was carried out in an evacuated quartz ampoule using presynthesized melts (Ag₂S, PbS, Ga₂S₃) and highpurity elements at a temperature of 1100–1400 K. After melting the samples were gradually cooled down to 650–800 K at a rate of 10–15 degrees per hour, and followed by homogenization under the condition of 300–400h. After that, physicochemical analysis methods were applied to the studied samples.

The homogenized alloys of the Ag₂S-Ga₂S₃-PbS quasi-ternary system were studied using differential thermal analysis (DTA), X-ray fluoresence (RFA) and microstructure analysis (MSA), along with methods for determining the density and microhardness of the alloys. The DTA analysis of the alloys was performed using a NETZSCH 404 F1 Pegasus device with a heating rate of 10 K/min, up to maximum temperature of ~1400 K. Powder X-ray difraction measurements were taken on a D2 Phaser radiometer (CuK_{α} lamp, Ni filter), microhardness was measured with PMT-3 device, and microstructural studies were conducted using a MIM microscope. The density was determined by the pycnometric method with toluene as a filling ligating fluid.

Results and discussion

It should be noted in advance that there is no available literature data on the $Ag_2S-Ga_2S_3$ -PbS quasi-ternary system and it has been studied for the first time by us. Below is an overview of the quasi-binary and partially quasi-ternary section of the system.

The AgGaS₂-PbGa₂S₄ section is a quasi-binary section of the quasi-ternary system with the eutectic characteristics [21]. The liquid of the system consists of solid solutions formed on he basis of AgGaS₂ and PbGa₂S₄ which crystallize along the initial crystallization curves α and β and solidify at the eutectic point. (Fig. 1.). The eutectic point coordinates are 45 mol% AgGaS₂ 1100 K. The lattice parameters of solid solutions formed

on the basis of $AgGaS_2$ vary as follows: a = 5.754– 6.042, c = 10.26÷10.34 A⁰, d = 4.60÷4.75 g/cm³.

 σ -Solid solutions based on PbGa₂S₄ cover the solidity interval of 82–100 mol% PbGa₂S₄. These solid solutions crystallize in the rhombic structure: a = 20.44÷20.72, b = 20.64÷20.90, c = 12.09÷12.24 A⁰ f.q. Fddd2, Z = 32, d = 4.94÷4.80g/cm³.

Fig. 1. Phase diagram of the AgGaS₂-PbGa₂S₄ system [21]

The AgGaS₂-Pb₂Ga₂S₅ section is quasi-binary, simple eutectic type. Coordinates of the eutectic point are 45 mol% AgGaS₂, T=950 K [22] (Fig. 2.). According to the results of the microstructure and X-ray analysis, 12 mol% of AgGaS₂ (ϵ -solid solutions) and 13 mol% of Pb₂Ga₂S₅ (σ -solid solutions) are formed. Phases with ϵ -type variable composition crystallize in chalcopyrite type (a = 5.754÷5.804; c = 10.299÷10.328 Å⁰). (Pb₂Ga₂S₅)1-x(AgGaS₂)x type σ -solid solutions crystallize in rhombic syngonia (a = 12.38÷12.30; b = 11.90÷11.84; c = 11.03÷10.90 Å⁰).

Fig. 2. Phase diagram of the AgGaS₂-Pb₂Ga₂S₅ system [22]

The $AgGaS_2$ -PbS section is characterized by the formation of a quadruple compound with $AgPb_2GaS_4$ composition (Fig. 1). The $AgPb_2GaS_4$

compound is formed by the peritectic reaction $L+\beta(PbS) \leftrightarrows AgPb_2GaS_4$ and melts decomposing at 1225 K temperature (Fig. 3.).

322

Fig. 3. Phase diagram of AgGaS₂-PbS system

The AgPb₂GaS₄ compound silver thiogallate is AgGaS₂ eutectic equilibria with (40 mol% PbS, T = 1150 K). 5 mol% PbS based on AgGaS₂ and 10 mol% AgGaS₂ based on PbS form a variable composition phase. According to the results of radiographic analysis, AgPb₂GaS₄ compound crystallizes in orthorhombic syngonia (a = 8.20, b = 6.84, c = 6.62 A⁰). The Ag₉GaS₆-AgPb₂GaS₄ cross section is a partial quasi-binary cross section of the quasiternary system [23]. Since the AgPb₂GaS₄ compound melts by decomposing, it behaves as a non-quasi-binary section in the range of 70–100 mol% AgPb₂GaS₄ and at temperatures up to 1180 K (Fig. 4.).

Fig. 4. Phase diagram of the Ag₉GaS₆-AgPb₂GaS₄ system [23]

Three-phase alloys $(L+\beta+\gamma)$ crystallize together in the subsolidus in the indicated interval of the system. Two phases $(\phi+\gamma)$ crystallize together in the solidus of the system. Eutectic equilibrium occurs at 50 mol% Ag₉GaS₆ and T = 990 K. Substitution-type solid solutions are formed based on the component in a limited interval. The Ag₉GaS₆-PbS crosssection is a quasi-binary of the Ag₂S-Ga₂S₃-PbS quasi-ternary system, of eutectic type [23]. The eutectic point coordinates are : 45 mol% PbS and T = 950 K. based on Ag₉GaS₆. 5mol%, on PbS – 8.5 mol% solid solution is formed. (Fig. 5.).

Journal of Chemistry and Technologies, 2025, 33(2), 319-325

Fig. 5. Phase diagram of Ag₉GaS₆-PbS system [23]

The AgPb₂GaS₄-Pb₂Ga₂S₅ system being a partial quasi-binary section of the quasi-ternary system behaves as a quasi-binary, in the solidity interval

of 100–42 mol% $Pb_2Ga_2S_5$ and below 970 K (Fig. 6.).

Fig. 6. Phase diagram of the AgPb₂GaS₄-Pb₂Ga₂S₅ system

The system is non-quasi-binary above 1125 K and in the range of 0–42 mol% Pb₂Ga₂S₅. In this part, first L+ β , L+ β + α , and then β + α and L+ γ phases crystallize. Two phases α + σ crystallize together in solidus (Fig. 6.). The liquidus of the system β (PbS) consists of initial crystallization curves, α (AgPb₂GaS₄) and σ ₁(Pb₂Ga₂S₅) phases, intersecting at 65 mol% Pb₂Ga₂S₅ content and temperature of 970 K. Based on AgPb₂GaS₄ 14 mol% and based on Pb₂Ga₂S₅ 10 mol% a variable composition phase is formed.

The $Ag_2Ga_{20}S_{31}$ -PbGa $_2S_4$ section is also a partial quasi-binary section, characterized by obtaining a

limited solubility area based only on the initial component $Ag_2Ga_{20}S_{31}$ (Fig. 7.). The section is quasi-binary only at the solidus. The peritectic reaction $L+\mu(Ga_2S_3) \leftrightarrows æ(Ag_2Ga_{20}S_{31})$ occurs at temperatures above 1085 K. The eutectic e_{14} contains 65 mol% PbGa_2S_4 and crystallizes at 1085 K. æ(Ag_2Ga_{20}S_{31}) and σ_2 (PbGa_2S_4) phases crystallize together in solidus in the range of 10–100 mol% PbGa_2S_4. A 10 mol% solid solution is formed based on $Ag_2Ga_{20}S_{31}$. The solution limit is not set on the basis of PbS.

Journal of Chemistry and Technologies, 2025, 33(2), 319-325

Fig. 7. Phase diagram of the Ag₂Ga₂₀S₃₁-PbGa₂S₄ system

The coordinates of invariant points in the indicated systems are presented in the table.

Section	Invariant point	T,K	Reaction
AgGaS ₂ -PbGa ₂ S ₄	eutectic	1100	L≒α+β
AgGaS2-Pb2Ga2S5	eutectic	950	L≒ε+σ
AgGaS ₂ -PbS	peritectic	1225	L+PbS≒AgPb₂GaS₄
	eutectic	1150	L≒ε+γ(AgPb₂GaS₄)
Ag9GaS6- AgPb2GaS4	eutectic	990	L≒φ+Υ(AgPb₂GaS₄)
Ag ₉ GaS ₆ -PbS	eutectic	950	L ≒ φ+β
AgPb2GaS4- Pb2Ga2S5	eutectic	970	L≒γ+σ
Ag2Ga20S31 - PbGa2S4	eutectic	1085	L≒æ+σ₂

4 quasi and 3 partial quasi-binary sections were studied on the Ag₂S-Ga₂S₃-PbS quasi-ternary

system. Based on quasi-binary sections a quasiternary system is triangulated. (Fig. 8.)

Table

Fig. 8. Triangulation of the Ag₂S-Ga₂S₃-PbS ternary system

It has been established that the quasi-ternary system is triangulated into 5 subsystems:AgGaS₂-Ga₂S₃-PbGa₂S₄, AgGaS₂-PbGa₂S₄-Pb₂Ga₂S₅, AgGaS₂-PbS-Pb2Ga2S5, Ag9GaS6-PbS-AgGaS2, Ag2S-Ag9GaS6-PbS.

The triangulation of the quasi-ternary system and its quasi-binary sections allowed to determine the composition of the alloy to grow mono crystals of high-temperature melting compounds such as PbS, Ag₂S, Ga₂S₃, AgGaS₂, AgPb₂GaS₄.

Conclusion

The phase equilibrium in the $Ag_2S-Ga_2S_3-PbS$ quasi-ternary system was studied for the first time using the research methods of complex physicochemical analysis. As a result of the research, it was determined that the four sections

References

- [1] Tozawa, M., Ofuji, S., Tanaka, M., Akiyoshi, K., Kameyama, T.,Yamamoto, T., Motomura, G., Fujisaki, Y., Uematsu, T., Kuwabata, S., Torimoto, T. (2024). Spectrally Narrow Blue-Light Emission from Nonstoichiometric AgGaS₂ Quantum Dots for Application to Light-Emitting Diodes, ACS applied materials & interfaces, 16(49), 68169–68180. https://pubs.acs.org/doi/10.1021/acsami.4c13987.
- [2] Qiao, H., Zhong, K., Li, F., Zhang, X., Yuan, Z., Kang, B., Xu, D., Yao, J. (2021). Temperature-dependent optical properties of AgGaS2 in the terahertz range, *Optical materials*, 119, 11300–11309. https://doi.org/10.1016/j.optmat.2021.111300
- [3] Zhang, S., Lin, C., Huang, B., Xue, Y., Huang, D. (2025). A theoretical study on absorbers for the intermediate band solar cell from group-IV element (Si, Ge, Sn) doped AgGaS₂, *Computational and theoretical chemistry*, 1248, 115205–115213.
- https://doi.org/10.1016/j.comptc.2025.115205
 [4] Xing, G., Chen, B. (2025). AgGaS₂ and Derivatives: Design, Synthesis, and Optical Properties, *Nanomaterials*, 15(2), 147–155
 https://doi.org/10.3390/nano15020147
- [5] Rudysh, M. Ya., Ftomyn, N. Y., Shchepanskyi, P. A., Myronchuk, G. L., Popov, A. I., Lemée, N., Stadnyk, V. Y., Brik, M. G., Piasecki, M. (2022). Electronic Structure, Optical, and Elastic Properties of AgGaS₂ Crystal: Theoretical Study, *Advanced theory and simulations*, 5(9). https://doi.org/10.1002/adts.202200247
- [6] Mouacher, R., Seddik, T., Rezini, B., Haq, B. Ul., Batouche, M., Uğur, G., Uğur, S., Belfedal, A. (2022). Firstprinciples calculations of electronic and optical properties of AgGa_{1-x}Tl_xS₂ alloys: Analyses and design for solar cell applications, *Journal of solid state chemistry*, 309. 122996–123004. https://doi.org/10.1016/j.jssc.2022.122996
- [7] Li, Z., Cao, Sh., Wang, K., Li, Q., Huang, Y., Fu, H., Zhao, J., Yang, W., Zheng, J. (2024). Highly efficient narrowed emitting AgInxGa_{1-x}S₂/AgGaS₂ quantum dots via an HFassisted one-pot synthesis strategy and their lightemitting diodes, *Journal of materials chemistry. C, Materials for optical and electronic devices, 12*(18). 6528–6539. https://doi.org/10.1039/d4tc00615a
- [8] Adeleye, D., Sood, M., Melchiorre, M., Debot, A., Siebentritt, S. (2024). Composition dependence of electronic defects in CuGaS₂, Progress in photovoltaics, *32*(8). 528–545. <u>https://doi.org/10.1002/pip.3778</u>
- [9] Vijayan, K., Vijayachamundeeswari, S. P. (2023). Effect of temperature and improving the optoelectrical attributes of copper gallium sulfide (CuGaS₂) thin films, *Phase transitions*, 96(5), 350–360. https://doi.org/10.1080/01411594.2023.2184360

of the quasi-ternary system are quasi-binary, and their T-x phase diagrams were constructed. It was found that the ternary system has limited solubility areas based on the four-component compound of the composition $AgPb_2GaS_4$ and initial components.

- [10] Zhoo, B., Zhu, Sh., Li, Zh., Yu, F., Zhu, X., Gao, D. (2001). Growth of AgGaS₂ single crystal by dessending crusible with rotation method and observation of properties, *Chinese Soc.Bull*, 146(3), 2009–2013.
- [11] Chemla, D.S., Koracek, P.J., Rubertson, D.S., Smith, R.C. (1991). Silver tiogallate, a new material with potential for infrared devices, *Optics Commun*, 3(1), 29–31.
- [12] Horyunova, N.A. (1968). Complex diamond-like semiconductors. M.: Soviet Radio.
- [13] Olekseyuk, J.D., Parasyuk, O.V., Halka, V.O., Piskach, L.V. Pankevych, V.Z., Romanyuk, Ya.E. (2001). Phase equilibria in the quasiternary system Ag₂S-CdS-Ga₂S₃, *J. Alloyys and Compounds*, 325(1), 167–179. https://doi.org/10.1016/S0925-8388(01)01361-5
- [14] Singh, N.B., Hopkins, R.H., Feichtner, J.D. (1986). Effect of annealing on optical quality of AgGaS₂ single crystals, *J. Mater. Science*, 21, 837–840.
- [15] Mammadov, F. M. (2021). New version of the phase diagram of the MnTe-Ga₂Te₃ system, *New Materials, Compounds and Applications*, 5(2), 116–121.
- [16] Jahangirova, S.K., Mammadov, Sh.H. (2019). Research of the Ag₂S-PbS system, Materials of the scientific conference "Naghiyev's Readings" dedicated to the 110th anniversary of Academician M. Naghiyev, 150
- [17] Baojun, Ch., Shifu, Z., Beijun, Z., Yongbo, L., Xiaojuan, Wu., Zerui, Y., Zhiyu, H. (2008). Differential thermal analysis and crystal growth of AgGaS₂, *J. Crystal Growth*, *310*(3), 635–638. https://doi.org/10.1016/j.jcrysgro.2007.10.067.
- [18] Chykhrij, S.I., Parasyuk, O.V., Halka, V.O. (2000). Crystal structure of the new quaternary phase AgCd₂GaS₄ and phase diagram of the quasibinary system AgGaS₂–CdS, *J. Alloys Comp*, *312*(1-2), 189–195. https://doi.org/10.1016/S0925-8388(00)01145-2.
- [19] Olekseyuk, I.D., Parasyuk, O. V., Halka, V. O., Piskach, L.V.F., Pankevych, V.Z. Romanyuk, Ya.E. (2001). Phase equilib-ria in the quasi-ternary system Ag₂S-CdS-Ga₂S₃, *J. Alloys Comp*, 325(10), 167–179. https://doi.org/10.1016/S0925-8388(01)01361-5
- [20] Brand, G., Kramer, V. (1976). Phase equilibrium in the quasi-binary system Ag₂S-Ga₂S₃. *Mater. Res. Bull*, 11, 1381–1388.
- [21] Mammadov, Sh H., Gurbanov, G R., Ismailova, R A. (2025). Phase diagram of the AgGaS₂-PbGa₂S₄ system, *Voprosy Khimii i Khimicheskoi Tekhnologii*, (1), 22–26
- [22] Mammadov. Sh.H. (2023). Study of the AgGaS₂-Pb₂Ga₂S₅ cross section and some physicochemical properties of phases with variable composition, *Journal of Scientific News*, *23*(1), 48–53.
- [23] Gurbanov, H.R., Mammadov, Sh.H., Jahangirova, C.K., Agayeva, R.M., Rahimova, V.M. (2020). Study of phase equilibrium in Ag₉GaS₆-PbS and Ag₉GaS₆-AgPb₂GaS₄ systems, *Higher Technical School News*, 22(1), 49–52.