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Abstract 
This paper addresses the challenges of simulating viscoplastic longitudinal and cross-sectional flows of non-
Newtonian fluids. A superposition method is proposed to construct higher-dimensional flow fields from lower-
dimensional ones, accommodating varying boundary conditions and pressure-dependent rheological parameters. 
The study details theoretical approaches for modeling non-Newtonian fluid flows in channels with diverse 
geometries, including moving boundaries and pressure drops at channel edges, considering the functional 
relationships between key process parameters. It is demonstrated that both longitudinal and cross-sectional flows 
can be represented as a combination of one-dimensional longitudinal flows of the same type, enabling the description 
of three-dimensional isothermal flows in rectangular channels and two-dimensional flows in flat channels with 
varying aspect ratios. The resulting theoretical two- and three-dimensional models of viscous flows in basic channel 
geometries facilitates the investigation of fundamental process regularities and the determination of optimal macro-
kinetic and macro-dynamic flow characteristics for non-Newtonian materials, ultimately aiming to reduce energy 
consumption and material usage in food processing equipment. 
Keywords: flow; non-Newtonian fluid; channel; rheology; simulation. 
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Анотація 
У роботі досліджені проблеми моделювання в’язкопластичних течій неньютонівських рідин у поздовжньому 
та поперечному напрямках. Запропоновано метод суперпозиції для побудови полів течії вищої розмірності на 
основі полів нижчої розмірності з урахуванням змінних граничних умов та залежності реологічних 
параметрів від тиску. Розглянуто теоретичні підходи до моделювання течій неньютонівських рідин у каналах 
різної конфігурації, зокрема з рухомими межами та перепадами тиску на краях, з урахуванням 
функціональних зв'язків між ключовими параметрами процесу. Показано, що поздовжні та поперечні течії 
можуть бути зведені до комбінації одновимірних поздовжніх течій аналогічного типу, що дозволяє описувати 
тривимірні ізотермічні течії у прямокутних каналах та двовимірні течії у плоских каналах з різним 
співвідношенням сторін. Побудовано теоретичні дво- та тривимірні моделі в’язкопластичних течій у каналах 
базової геометрії, що дає змогу досліджувати основні закономірності процесу та визначати оптимальні 
макрокінетичні та макродинамічні характеристики течії неньютонівських матеріалів з метою оптимізації 
енергоспоживання та використання матеріалів у харчовому обладнанні. 
Ключові слова: течія; неньютонівська рідина; канал; реологія; моделювання. 
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Introduction 
Understanding fluid hydrodynamics is 

fundamental to optimizing most food technology 
processes. Moving fluids transfer energy, 
including kinetic and thermal energy [1; 2]. Many 
fluids encountered in food processing equipment 
are heterogeneous systems, often consisting of 
solutions and mixtures exhibiting non-Newtonian 
behavior [3; 4]. Characterizing the structure and 
flow regimes of these non-Newtonian materials is 
crucial for designing efficient technological 
processes and optimizing hydrodynamic, thermal, 
and mass transfer indicators. However, the 
complexity of rheological models often limits the 
ability to fully describe the relationships between 
process parameters. This limitation hinders the 
development of new energy-efficient technologies 
and can lead to increased development time and 
costs [5; 6].  

Therefore, developing scientifically sound 
approaches for modeling the flow of non-
Newtonian materials remains an important 
challenge. This involves constructing theoretically 
robust mathematical models to describe non-
Newtonian flow and identifying optimal structural 
and technological parameters for energy-efficient 
processes and equipment in the chemical and food 
industries [7]. 

Fluid flows within equipment can be broadly 
classified based on the Reynolds number (Re): Re 
> 1 (high Reynolds number) and Re < 1 (low 
Reynolds number). High Re flows, typical of low-
viscosity liquids, facilitate efficient heat and mass 
transfer [8–10]. Conversely, low Re flows, 
characteristic of highly viscous liquids, generate 
high shear rates, internal friction, and pressure. 
These conditions can significantly alter the 
internal structure of the fluid. While heat and mass 
transfer are paramount in high Re flows, with the 
rheological state of the fluid playing a less 
significant role, the rheological behavior is of 
primary importance in low Re flows. 
Consequently, using only Newtonian models to 
describe these flows is inadequate. 

A key distinction between high and low Re 
flows is the behavior of rheological parameters. In 
high Re flows, these parameters typically remain 
constant during the flow. In contrast, they can vary 
significantly in low Re flows, particularly in 
chemical processing. The driving force in high Re 

flows is typically a pressure difference across the 
flow domain. In low Re flows, the movement of the 
flow boundaries is the primary driving force. 
Transporting highly viscous liquids requires more 
energy, and the resulting pressure is a 
consequence of this boundary movement [11–14]. 

Examples of high Re flows include flow through 
tubes with a defined pressure drop, commonly 
found in various technological equipment and 
conduits [15–17]. Low Re flows are often 
observed in channels and within the working 
chambers of screw machines, where highly 
viscous fluids are processed and their properties 
modified [18–20]. While some general fluid 
mechanics principles apply to both Newtonian 
and non-Newtonian fluids, the distinct 
characteristics of low Re flows necessitate careful 
consideration of the fluid's rheological properties. 

The aim of this work is to develop and improve 
theoretical models of viscoplastic flows of non-
Newtonian fluids in channels of various 
configurations, taking into account complex 
interactions such as moving boundary conditions, 
variable rheological parameters depending on 
pressure, and three-dimensional effects. The 
research is aimed at optimizing the macrokinetic 
and macrodynamic characteristics of these flows, 
in particular to reduce energy consumption and 
more efficient use of materials in technological 
equipment.  

Results and discussion. 
In this paper, the methods for simulating 

viscoplastic longitudinal flow in flat and 
rectangular channels are discussed. The channel 
bounds are movable. This movement can occur 
both along and across the channel. The channel 
with rectangular cross-section is considered 
standard. The flow in the channel is characterized 
by velocity and pressure values in each point of 
the flow region. Information about the flow may 
be condensed (pressure and consumption only) 
and full, or local (pressure and velocity) at each 
point. Movement of liquid in the channel can be 
straight and curved. The latter does not affect the 
results because inertia does not matter for the 
flows with Reynolds number lower than 1 [21–
23].  

The equations for stokes flows have the 
following general form: 

ˆ 0P − + = , ( )zyx  ,,=


,  

0= 


, ik =ˆ , zyxki ,,, = , (1) 

( )TP,,ˆˆˆ  = , ik  =ˆ , ( )P = ,  

where P – pressure in the fluid, Pa; 
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 ρ – density of the fluid, kg/m3; 
̂  – stress tensor, Pa; 
  – flow velocity vector, m/s; 
T – temperature, K; 

̂  – strain rate tensor, 1/s; 
x, y, z – coordinates of point in the flow region, m.  
 

All flows described by equations (1) can be 
divided into two groups. The first group includes 
flows with velocity vector which has only one 
component. This component may depend on one 
or two coordinates, but these coordinates should 
be transverse. If coordinate z is chosen as the 
longitudinal coordinate (along 0z axis), then 
coordinates x and y will be transverse. 
Longitudinal flows have a velocity component z  

which can depend either on x or on y separately or 
on both these coordinates. Longitudinal flows 
have only one velocity component which depends 
only on transverse coordinates and can not 
contain any values which depend on pressure and 
temperature except for the pressure gradient. In 
these longitudinal flows the distribution of 
velocity is the same in all cross-sections. The 
second group contains flows with a velocity vector 
which has two or three components each of which 
depends on two or three coordinates. 

The flows of the second group can be ordered 
like this: two-dimensional longitudinal flows; two-
dimensional transverse flows with zero 
longitudinal velocity, three-dimensional twist-
and-steer flows which contain all three velocity 
vector components each of which depends on all 
three coordinates. 

The reasons for various types of flows are 
the boundary conditions and dependency (or 
independency) of rheological characteristics on 
pressure and temperature. Such dependency of 

reasons and consequences can be illustrated by 
the example of Newtonian or non-classical non- 
Newtonian fluid with properties that do not 
depend on the strain rate tensor. If some flow 
depends only on longitudinal coordinate and has a 
longitudinal component only than this is the flow 
in a flat channel which has only one pair of bounds 
– and the velocities of these bounds are also 
longitudinal. At the same time, only pressure 
varies along the channel. If rheological parameters 
depend on pressure, than component of the stress 
tensor in equation (1) will also depend on 
pressure. In this case, longitudinal velocity 
depends on longitudinal coordinate. Due to the 
equation of matter conservation (1) the second – 
transverse – velocity component appears, 
although boundary conditions are purely 
longitudinal. For Newtonian fluid, the longitudinal 
flows with one velocity component which depends 
on two transverse coordinates are possible. These 
flows demand for one additional pair of bounds 
with longitudinal boundary conditions to be 
available. Complication of this problem and the 
addition of dependency for rheological 
characteristics leads to the solution of this 
problem beyond the two-component flow. The 
flow obtains an additional component and yet 
another coordinate as an argument. Thus adding 
another pair of bounds adds new coordinate while 
adding dependency from the pressure adds both 
component and coordinate. This is illustrated on 
Fig. 1. 

               
(a)       (b) 

 

Fig. 1. Longitudinal fluid flow:  
(а) – in channels with mutually perpendicular bounds; (b) – in the rectangular channel 
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There are also purely transverse flows for 
Newtonian fluids. If the channel is flat and the 
velocities of its bounds are purely transverse, then 
the flow will be purely transverse and will depend 
on one transverse coordinate only. In the practical 
aspect, these flows are of interest to the small 
channels with large width. These channels may be 
approximately considered as flat. The flow 
consumption in wide closed channel has a value of 
zero. Hence, in order for the transverse flow in a 
flat channel to adequately represent the 
transverse flow in a rectangular channel, a purely 
longitudinal flow with zero consumption should 
be considered. If rheological characteristics of the 

flow depend on pressure, then the transverse flow 
in a flat channel obtains an additional velocity 
component and additional coordinate as a 
variable. This is illustrated on Fig. 2. 

The flow in a rectangular channel with bounds 
that move both longitudinally and transversally 
has three velocity components. If the fluid is 
Newtonian, then all these components depend on 
two transverse coordinates only. If equation of the 
rheological state includes pressure, than the third 
– longitudinal – coordinate is added, and the flow 
itself has the highest complexity level. 

 

 
(a)      (b) 

 
Fig. 2. Transverse fluid flow: (а) – in flat channels; (b) – in the rectangular channel 

 

When a connection between bounds count, the 
type of boundary velocities and rheological 
characteristics are established, then the method of 
building the velocity field of two- and three-
dimensional flows on the velocity field of the flow 
with lower dimension can be suggested. This 
method involves the representation of a 

transverse flow in a rectangular channel as the 
superposition of two transverse flows in two flat 
channels which are perpendicular to each other 
and have zero consumption. This method can be 
applied to both Newtonian and non-Newtonian 
fluids. This superposition is represented in Fig. 3. 

 
(a)      (b) 

 

Fig. 3. Fluid flow in flat channels: 
(а) – velocity profiles in transverse flows; (b) – superpositions of transverse flows 
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The superposition lies in the fact that for each 
flat channel with bound that are perpendicular to 
each other, the longitudinal flow is considered. 
The equations of this flow contains terms related 
to another channel. The easiest way to see this is 

to consider the transverse flow of Newtonian fluid. 
Suppose there is a transverse flow on the 0y axis 
direction which depends on x  coordinate (Fig. 4.). 

 
(a)       (b) 

 

Fig. 4. Velocity profile and boundary velocities: 
(а) – in longitudinal flow which depends on х coordinate; (b) – in longitudinal flow which depends on y 

coordinate 
 

In this case the equations for stress balance have the following form: 

yxy

P yyyx




+




=



 
, ( ) 1Why =+ , (2) 

( )xvv yy = , ( ) 2Why =− , ( ) 2v h Wy − = . 

where h – if the half of flat channel width, W1, W2 – are the channel boundaries 
velocities. 

 

In order to solve the problem (1) the 
connection between 

yx  and 
yy  should be 

specified. This can be done in several different 
ways, however the connection between stresses 
and velocities of deformations in the ik ik =  

form for Newtonian fluid should be known. Thus 
knowing the boundary conditions the derivatives 
with respect to x  coordinate can always be 
expressed in terms of derivatives with respect to 
y  coordinate. The derivatives with respect to x  

coordinate are related to the flow in channel with 
sides that are perpendicular to the channel from 
problem (2). This can be done as follows: 

( )1 2~ / 2
yv

W W h
x


−


; ( )3 4~ / 2xv

W W a
y


−


 in case when 

1 2 0W W−  , 
3 4 0.W W−   Otherwise the estimates of 

the following form should be used: 

( )1~ /
y

m x

v
v W

x

+


− 


; ( )2m xv W −−  ; ( )3~ /x

m y

v
v W

y

+
− 


; 

( )4m yv W −−  , where 
x

 , y

  characterize the 

extremum position of velocity of the respective 
longitudinal flow: 2y y h+ − + = ; 2x x a+ − +  = . In the 

first case the estimates lead to yy

y




 expressed in 

terms of yx

x




. In the second case values mv  and 

x

  

y

  act as unknown parameters which are 

determined after solution of the problem. In both 
cases the problem (2) is reduced to the 
longitudinal problem with one transverse 
coordinate. Then the same problem, but for the flat 
channel which is perpendicular to the first one is 
considered. This problem can be represented in 
the following form: 

xyx

P xxxy




+




=



 
, ( ) 3Wavx =+ , (3) 

( )yvv xx = , ( ) 4Wavx =− .  

The solution to this problem has the same form 
as the solution of problem (2). The estimates for 

velocity derivatives allow expressing xx

x




 in terms 

of xy

y




. The solution (2) and (3) should consider 

the zero-consumption condition. This condition 
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leads to the equations for P

y




 and P

x




 in a way that 

values of these pressure become dependant on W1 
– W2π and W3 – W4. 

Applying the method described below to non-
Newtonian fluid does not lead to any fundamental 
changes but make the solution for problems (2) 
and (3) core complicated. Here the following cases 
are possible: viscosity depends on the second 
invariant of the strain velocity tensor, or viscosity 
depends on pressure.  

In the first case, all terms of the second 
invariant should be expressed in terms of 

corresponding derivative of the longitudinal 

velocity: for problem (2) it is y

x




; for problem (3) 

– it is x

y




. In the second case the longitudinal 

flows ( )y x  and ( )x y  obtain additional 

component ( )x x  – for problem (2), and ( )y y  – 

for problem (3). Hence, in this case the problem 
for longitudinal flow with one transverse 
component should be considered. This problem is 
based on the following equations: 

zyz

P zzzy




+




=



 
,  (4) 

 
(a)       (b) 

 

Fig. 5. Longitudinal flow with transverse component for the fluid, properties of which depend on pressure: 
(а) – transverse component is directed along ох axis; (b) – transverse component is directed along oy axis 

 

The solution for this problem is based in 

reducing zz

z




 to zy

y




 with the aid of described 

estimates. The solution for problem (4) describes 
longitudinal flow along the channel axis with the 
following boundary conditions: 

( ) LPLzP == , ( ) 00 PzP == , (5) 

where L – channel length, m; P0 and PL – pressure values on the channel bounds, Pa.  
 

If the zero-consumption condition is taken into 
account then the solution for the problem 
describes the transverse flows in channel which 
are perpendicular to each other and have two flat 
bound. 

The problem for longitudinal flow for another 
pair of the bounds looks similar to the problem 
(4): 

0=



+




=




−

zxz

P zzzx 
, (6) 

( ),, zxzz  =  ( ) 7, Wzaz =+ , ( ),, zxxy  =  ( ) 8, Wzаz =− . 

where W7 and W8 – longitudinal velocities, m (Fig. 5).  
 

Problems (2), (3), (4), (5) lead to velocity fields 
which consist of two velocity fields in the 
intersection of flat channels. Thus, the question of 
choosing one or another field arises. This can be 
done in two ways. The first method: the velocity 

fields obtained as the solutions for different 
problems are attributed to the bounds for which 
they are obtained. Herewith, four fields are 
obtained for longitudinal velocity: two for each 
pair of bounds. The condition for continuity of 

( )zyzz , = , ( ) 5, Wzhz =+ , ( )zyxx , = , ( ) 6, Wzhz =− . 

Where W5, W6 – values for longitudinal velocities of the bounds (Fig. 5). 
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longitudinal velocity values, which are calculated 
based on two different expressions, leads to four 
equations for four lines which divide the rectangle 

of channel cross-section into sub-areas, each of 
which is described by its own expression for 
longitudinal velocity (Fig. 6а). 

 
(a)      (b) 

 

Fig. 6. Partition of cross-section of rectangular channel into sub-areas: 
(а) – for longitudinal flow; (б) – for transverse flow 

 

The same procedure is applied for transverse 
flow. In this case, there are four sub-areas as well. 
However, the condition for their fixation is not the 
condition for velocity continuity but the condition 
for continuity of the absolute velocity. Velocity 
vectors are tested on the lines which separate one 

area from another by rotating by the angle of 
2


 

(Fig. 6b). This method lies in the fact that for the 
rectangular channel with different sides a and h 
the main velocity field is the field which has longer 
bounds. This field is corrected by the multipliers 
in order to match boundary conditions for the 
second pair of bounds. Also, the experimentally 
tested statement about the fact that the influence 
of the pair of bounds extends inside the flow 
region for a distance approximately equal to the 
bounds length is used. Thus, for large values of this 
length, the influence of shorter pair of bounds 
weakens. In order to illustrate this statement, the 
channel in which a h  it can be considered. In 
this case, the cross-section has two sub-areas 
which abut the sides with length h and extend 
deep for a distance of h, in which expression for 
velocity flow in a flat channel with the width of 2h 
should be corrected in the abovementioned sense. 
Outside of these two regions, the flow is the same 
as without these two bounds. Applying this 
method to the transverse flow leads to these two 
velocity fields, each obtained for its own pair of 
bounds, are attributed to the entire area of 
rectangular cross-section, but corrected by 

multipliers which consider the missing pair of 
bounds. The method described above is more 
precise but also more complicated. The 
complexity of its application is in the fact that 
bounds influence extends inside the flow region 
for a distance of the bound area and is valid for 
Newtonian fluids only. This rule is also valid for 
non-Newtonian fluid, but the bound length should 
be multiplied by some multiplier which depends 
on the parameters of the rheological state 
equation. 

 

Experimental part 
In order to visualize the presented method of 

superposition, in this article we provide a 
calculation to confirm the obtained theoretical 
solutions by comparing them with experimental 
data and, based on them, assess the adequacy of 
the obtained models. As an example, consider the 
definition of such an important macrokinetic 
characteristic as the flow rate V, which is one of the 
most important in the flow of non-Newtonian 
material [24]. The calculation was carried out for 
a model Bingham flow in a worm machine with 
geometric dimensions: the length of the helical 
line with the step tB = 0,086 m and the depth of the 
channel 2h = 0,007 m.  

Based on the choice of geometric dimensions of 
the worm channel, this channel can be considered 
close to flat. In this case, the influence of the 
second pair of walls can be neglected. Whence, the 
expressions for determining the coordinates of the 
borders have the following form: 

;   =         

0

;dP

d






=

      0

( )

2

W W

h






+ −−
=

     (7) 

Substituting these expressions into the formula to determine the cost  
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( ) ( ) ( )
5/22 2

2 2

2

8

2 15 / 4
y y y y

h dP
V W W h W W y h y

dP dz dz

  

 

+ − + −  
     = + − − + + + +  +  −         

 

( )
3/2 1/2

2 22

2 2

2
2 3 .

3 / 4 4

h dP h dP
h y

dP dz dz dz

  

  


    
 −  +  +  +            

     (8) 

leads to its following expression: 

( )

( ) ( )

˙

1 1

2
2 231

1 1 1 1 1
0 1

 ( )

2 3 1 3
(1 3 ).

3 2 2 2

V W W h WW h

h dP

d



    
 

+ − + −= + − − −

− − + − −

      (9) 

In the case of a helical channel in a coordinate 
system rotating with the worm, the value of the 
velocity W1 should be considered equal to zero. 

For the value , the following expression is a good 
approximation: 

3
0 0

1 2
0 1 1 1

2 32
1

33 16
s

h r

a hW

 
 

 +

 
  +  

 

    (10) 

The characteristics of the flat channel were determined using the following ratios: 

2 2 2
1 ,      B

B B
t

L n t D tg
D

 


=  + =
  1 cosB Ba t =

  (11) 
where tB – worm step, m; n – number of turns; B– 
the angle of elevation of the worm feather, 
degrees. 

Substitution of the results of the calculations 
according to the above formulas leads to the 
following expressions for determining the 
consumption of the worm device: 

( )

( )

( ) ( )2

0,60 1 / 7,140,63
33,2 1 ,

1 0,60 1 / 7,14 / 11
V N



 

  − 
=  +  

+  − −−   0 0

1,31
,

/W h


 +
=     (12) 

The obtained formulas are written in such a 

form and with such multipliers that the value V is 
calculated sm3/s in order to simplify the 
comparison with experimental data. 

Estimated values obtained when using a worm 
with a step tB = 0.086 m and the depth of the 
channel 2h = 0.007 m and rotation frequency up to 
240 spin for a second were compared with 
experimental data, the results are shown in fig. 7. 

 

 
Fig. 7. Comparison of experimental data with calculated values of V: 

solid line – calculated value, o – experimental data 
 

In this way, the obtained calculation results 
confirm the adequacy of the given theoretical 
dependencies to the real conditions of 
technological processes. 

 

Conclusion 
The method for reducing problems of flows 

with higher dimension to the problems of flows 
with lower dimension described in this paper can 
be applied to a wide variety of non-linear fluids 
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with various boundary conditions which are 
based not only on adhesion. This method can be 
extended to the flows with slipping and to the non-
isothermal flows. Herein one should consider the 
fact, that the flow of fluids with high viscosity is 
accompanied by significant dissipative heat 
release which is described by a distributed source. 
The presence of slipping apart from the 
mentioned source indicates the necessity for 
accounting of surface source which is localized on 
the flow region bound. Sliding contact on the 
border is similar to the contact of two solid 
surfaces. Heat release in this contact depends both 
on pressure normal to the contact and on the 
magnitude of the slip. In the first case, the heat 
release occurs on the Coulomb type, while in the 
second case – on the hydrodynamic type. The task 
for the future is to extend method of solving three-
dimensional problems to the problems with 
surface heat sources. 

Having the possibility of non-Newtonian fluid 
to slide at the region bounds allows dividing all 
flows into two groups. The first group includes 
flows throughout which the first sliding conditions 

are complied. The second group includes flows 
which are partially formed by adhesion conditions 
and partially – by sliding conditions. For the flows 
of the last group, the number of velocity vector 
components and the number of coordinates are 
changed in the cross-section of the channel which 
has longitudinal coordinate that matches the 
coordinate along which the change of boundary 
condition form may occur [24]. For such flows the 
problem of “bonding” several flows of two 
different types should be solved. Such “bonding” 
should be subordinated to the conditions of 
continuity of all velocity and pressure 
components. Here, the first derivatives of the 
velocity in the coordinates will experience a leap. 
Considering connections between the 
components of stress tensor and strain velocities 
the leap of velocity derivatives means the leap of 
components of stress tensors. Thus, the 
imposition of velocity components continuity 
conditions is not fully consistent, because it leads 
to the leap of stress components and the 
continuity of pressure (Fig. 8). 

 

 
(a)      (b) 

 

Fig. 8. Flow of the fluid with combined bounds: 
(a) – “bonding” lines for the fluid with sliding and adhesion conditions at the part of the bounds; (b) – 

partition of channel; cross-section into sub-areas when one of the sections belongs to the area with sliding and the 
other section belongs to the area with adhesion 

 

The more consistent is the extension of 
continuity conditions on the partial derivatives of 
the velocity vector in cross-section, where flows 
with different dimensions are linked. Everything 
said above applies to the longitudinal components 
of the velocity field and to the transverse 
components, providing that the partition of 
channel cross-section rectangle into sub-areas 
from different sides of the cross-section of 
transition from one boundary conditions to 
another is the same. In fact, it is not so, thus the 
problem of “bonding” and partitioning arises. This 
problem requires additional study. Therefore, the 
method for building three-dimensional velocity 
and pressure fields described in this paper has 

certain potential of development and extension on 
the flows which appear during the description of 
large amount of practical situations in food 
technological processes. The method described in 
this paper was applied to isothermal flows 
without sliding for the three-dimensional 
problems of the flow of Newtonian, power-law, 
generalized and Bingham fluids in the rectangular 
channel with arbitrary piecewise constant 
distribution of bound velocities [25–26]. Herein, 
in some cases, it was possible to consider fluid 
compressibility and the dependence of the 
parameters of the rheological state equation of the 
pressure.
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