

Journal of Chemistry and Technologies

pISSN 2663-2934 (Print), ISSN 2663-2942 (Online).

journal homepage: http://chemistry.dnu.dp.ua
editorial e-mail: chem.dnu@gmail.com

UDC 547.495:547.93

INTERACTION OF LABILE N-ALKOXY-N-CHLORO-N'-ARYLUREAS AND N-ACETOXY-N-ALKOXYUREAS WITH TRIMETHYL PHOSPHITE

Vasiliy G. Shtamburg¹, Evgeniy A. Klots¹, Andrey A. Anishchenko², Victor V. Shtamburg²,
Svitlana V. Shishkina^{3,4}, Alexander V. Mazepa⁵, Svetlana V. Kravchenko⁶

¹Ukrainian State University of Science and Technologies, Science Ave., 8, Dnipro, 49005, Ukraine

²Oles Honchar Dnipro National University, Science Ave., 72, Dnipro, 49050, Ukraine,

³SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Science Ave., 60, Kharkiv, 61001, Ukraine

⁴Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Academician Kukhar St., 5, Kyiv-94, 02660, Ukraine

⁵A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Luystdorfskaya Doroga St., 86, Odessa,

65080, Ukraine

6Dnipro State Agrarian and Economic University, S. Yefremova St., 25, Dnipro, 49600, Ukraine
Received 17 June 2025; accepted 23 July 2025; available online 20 October 2025

Abstract

The freshly synthesized N-alkoxy-N-chloro-N'-4-bromophenylureas undergo reaction with trimethyl phosphite in diethyl temperature yielding respectively dimethyl N-alkoxv-N-(N'-4ether at room bromophenylcarbamoyl)phosphoroamidates with high yields. The unstable N-alkoxy-N-chloro-N'-phenylureas, freshly synthesized at -30°C, interact with trimethyl phosphite in diethyl ether at this low temperature to produce previously unknown dimethyl N-alkoxy-N-(N'-phenylcarbamoyl)phosphoroamidates. This reaction is the first example of the nucleofilic substitution at the nitrogen atom for unstable N-alkoxy-N-chloro-N'-phenylureas. Careful conditions selection and precise control made it possible to pevent premature destruction of the starting N-alkoxy-N-chloro-N'-4-bromophenylureas and N-alkoxy-N-chloro-N'-phenylureas. In contrast, N-acetoxy-N-alkoxyureas do not react with trimethyl phosphite under the same conditions. The structures of the resulting dimethyl N-alkoxy-N-(N'-4-bromophenylcarbamoyl)phosphoroamidates and dimethyl N-alkoxy-N-(N'phenylcarbamoyl)phosphoroamidates were confirmed by ¹H, ³¹P₇ and ¹³C NMR spectroscopy, as well as mass spectrometry. A comparative analysis of ¹H, ³¹P and ¹³C NMR spectra of these dimethyl N-alkoxy-N-(N'arylcarbamoyl)phosphoroamidates with those of dialkyl N-alkoxy-N-(N'-4nitrophenylcarbamoyl)phosphoroamidates revealed general structural numerous shared features and characteristics of N-alkoxy-N-(N'-arylcarbamoyl)phosphoroamidates.

Keywords: *N*-alkoxy-*N*-chloro-*N*'-arylureas; trimethyl phosphite; dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoroamidates; synthesis.

ВЗАЄМОДІЯ ЛАБІЛЬНИХ N-АЛКОКСИ-N-ХЛОРО-N'-АРИЛСЕЧОВИН ТА N-АЦЕТОКСИ-N-АЛКОКСИСЕЧОВИН 3 ТРИМЕТИЛФОСФІТОМ

Василь Г. Штамбург¹, Євген О. Клоц¹, Андрій О. Аніщенко², Віктор В. Штамбург², Світлана В. Шишкіна^{3,4}, Олександр В. Мазепа⁵, Світлана В. Кравченко⁶

¹Український державний університет науки і технологій, пр. Науки, 8, м. Дніпро, 49005, Україна

²Дніпровський національний університет імені Олеся Гончара, пр. Науки, 72, м. Дніпро, 49050, Україна

³Державна наукова установа «Інститут монокристалів» НАН України, пр. Науки, 60, м. Харків, 61001, Україна

⁴Інститут органічної хімії НАН України, вул. Академіка Кухаря, 5, м. Київ, 02660, Україна

⁵ Фізико-хімічний інститут імені О.В. Богатського НАН України, вул. Люстдорфська дорога, 86, м. Одеса, 65080,

Україна

⁶Дніпровський державний аграрно-економічний університет, вул. С. Єфремова., 25, м. Дніпро, 49600, Україна Анотація

Досліджено взаємодію свіжо отриманих *N*-алкокси-*N*-хлоро-*N*'-4-бромофенілсечовин із триметилфосфітом у дієтиловому етері за кімнатної температури, яка приводить до утворення відповідних диметил-*N*-алкокси-*N*-(*N*'-4-бромофенілкарбамоїл)фосфорамідатів з високими виходами. Вперше синтезовані за температури -30 °C дуже нестабільні *N*-алкокси-*N*-хлоро-*N*'-фенілсечовини взаємодіють з триметилфосфітом у дієтиловому етері за температури -30 °C, утворюючи диметил-*N*-алкокси-*N*-(*N*'-фенілкарбамоїл)фосфорамідати. Ця реакція є першим прикладом нуклеофільного заміщення при атомі азоту у дуже нестабільних *N*-алкокси-*N*-хлоро-*N*'-фенілсечовинах. Ретельний підбір умов для проведення цих реакцій дозволив уникнути передчасного руйнування вихідних *N*-алкокси-*N*-хлоро-*N*'-4-бромофенілсечовин та *N*-алкокси-*N*-хлоро-*N*'-4-бромофенілсечовин та *N*-алкокси-*N*-хлоро-*N*'-

фенілсечовин. Структури синтезованих диметил-*N*-алкокси-*N*-(*N*'-4-бромофенілкарбамоїл)фосфорамідатів та діметил-*N*-алкокси-*N*-(*N*'-фенілкарбамоїл)фосфорамідатів підтверджено ¹H, ³¹P, ¹³C ЯМР-спектроскопією та мас-спектрометрією. Проведено порівняльний аналіз ¹H, ³¹P та ¹³C ЯМР спектрів отриманих діметил-*N*-алкокси-*N*-(*N*'-арилкарбамоїл)фосфорамідатів та діалкіл-*N*-алкокси-*N*-(*N*'-4-нітрофеніл-карбамоїл)фосфорамідатів. Встановлено численні спільні особливості та спільні характеристики.

Ключові слова: N-алкокси-*N*-хлоро-*N'*-арилсечовини; триметилфосфіт; диметил-*N*-алкокси-*N*-(*N'*-арилкарбамоїл)фосфорамідати; синтез.

Introduction

Urea and its derivatives find extensive application in medicine, medicinal chemistry and agriculture [1]. Phosphoramidates are also widely used in medicinal chemistry and drug development [2]. Although the routes for synthesizing phosphoramidates are diverse [2], the exploring new synthetic pathways could offer valuable advancements.

Recently, we have synthesized dialkyl *N*-alkoxy-*N*-(carbamoyl)phosphoramidates (*N*-alkoxy-*N*-(dialkoxyphosphoryl)ureas),

characterized by the coexistence of structural aspects from both ureas and phosphoramidates [3; 4].

The proposed synthesis is based on the possibility of interaction of *N*-alkoxy-*N*-chloroureas **1a-d** [3] and *N*-alkoxy-*N*-chloro-*N*'-alkylureas **2a-c** with trimethyl phosphite in ether at room temperature to form dimethyl *N*-alkoxy-*N*-(carbamoyl)phosphoramidates **3a-d** [3] and dimethyl *N*-alkoxy-*N*-(*N*'-alkylcarbamoyl)phosphoramidates **4a-c** [4; 5], respectively.

$$\begin{array}{c} Cl \\ H_2N \\ \hline \\ O \\ \textbf{1a-d} \end{array} \xrightarrow{P(OMe)_3} \begin{array}{c} O \\ POMe \\ OMe \\ \hline \\ OMe \\ OMe$$

Scheme 1. The synthesis of dimethyl *N*-alkoxy-*N*-(carbamoyl)phosphoramidates 3a-d [3] and dimethyl *N*-alkoxy-*N*-(*N*'-alkylcarbamoyl)phosphoramidates 4a-c, R=Pr, R'=H (a); R=Et, R'=1-C₁₀H₈ (b); R=Et, R'=Ph (c) [4]

N-Alkoxy-*N*-chloro-*N*'-(4-nitrophenyl)ureas **5a-f** are relatively stable compounds [6; 7]. They react with trialkyl phosphites in ether at room

temperature to form dialkyl N-alkoxy-N-(N'-4-nitrophenylcarbamoyl)phosphoramidates 6-13 as the major products [4; 5](Scheme 2).

$$O_{2}N$$

$$O_{3}$$

$$O_{2}N$$

$$O_{3}$$

$$O_{2}N$$

$$O_{3}$$

$$O_{4}$$

$$O_{5}$$

$$O_{6}$$

$$O_{1}$$

$$O_{2}$$

$$O_{2}$$

$$O_{3}$$

$$O_{4}$$

$$O_{5}$$

$$O_{6}$$

Scheme 2. The synthesis of dialkyl N-alkoxy-N-(N'-4-nitrophenylcarbamoyl)phosphoramidates 6–13 (R=R'=Me (6), R=Me, R'=Et (7); R=Et, R'=Me (8), R=Bn, R'=Me (9), R=Bn, R'=Et (10), R=CH₂CH₂Ph (11), R=i-Pr, R'=Me (12), R=n-C₈H₁₇, R'=Me (13)[4]

As known, *N*-alkoxy-*N*-chloro-*N*'-phenylureas cannot exist at room temperature [5]. Clorination of *N*-methoxy-*N*'-phenylurea **14** has been reported to give unstable *N*-methoxy-*N*-chloro-

N'-phenylurea **15**. Compound **15** isomerizes to *N*-methoxy-*N'*-(4-chlorophenyl)urea **16** by intramolecular chlorination at room temperature and lower temperatures [5] (Scheme 3).

Scheme 3. *N*-Methoxy-*N*-chloro-*N*'-phenylurea 14 isomerization into *N*-methoxy-*N*'-(4-chlorophenyl)urea 15 at room temperature [5]

As demonstrated by Glover's research, in N- alkoxy-N-chloroamides the N-Cl bond is

lengthened and weakened as a result of the action of the $n_{O(Alk)} \rightarrow \sigma^*_{N-Cl}$ anomeric effect [8–18]. This bond weakening facilitates the substitution of the chlorine atom by various types of nucleophiles [8–18].

However, the interaction of unstable *N*-alkoxy-*N*-chloro-*N*'-4-bromophenylureas and *N*-alkoxy-*N*-chloro-*N*'-phenyllureas with trialkyl phosphites has not been studied. Therefore, the aim of our work was to investigate this interaction and characterize the structure of the resulting products.

Experimental part

¹H NMR spectra were recorded on a VARIAN VNMRS 400 spectrometer (400 MHz). ¹³C NMR spectra were recorded ona VARIAN VNMRS 400 spectrometer (100 MHz). CDCl₃ and (CD₃)₂SO were used as the solvent. ¹H NMR chemical shifts relative to the residual solvent protons as an internal standard [(CD₃)₂SO: 2.500 ppm, CDCl₃: 7.260 ppm,] were reported. The solvent carbon atoms served as an internal standard for ¹³C NMR spectra [CDCl₃: 77.16 ppml. ³¹P NMR spectra were recorded ona VARIAN VNMRS spectrometer (161.95 MHz), the solvent CDCl₃ was used, 98 % H₃PO₄ was used as external standard. Mass spectra were recorded in fast atom bombardment mode (FAB) on a VG 70-70EQ mass spectrometer. The solvents were purified and dried according to standard procedures.

N-Benzyloxy-N'-4-bromophenylurea (17). The solution of benzyloxyamine (0.641 g, 5.205 mmol) in benzene (4 mL) was added to the solution of 4-bromophenylisocyanate (0.859g. 4.337 mmol) in benzene (9 mL), the reaction mixture was maintained at 20 °C during 35 h, then it was boiled during 0.25 h, cooled, the obtained precipitate was filtered off, washed by benzene (4 mL), dried under vacuum (5 mmHg), giving 1.100 g (79%) of N-benzyloxy-N'-4bromophenylurea 17, colorless crystals, mp 142-143 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 4.821$ (2H, s,NOCH₂); 7.298-7.483 (7H, m, C(2)H, C(6)H C_6H_4Br , Ph); 7.533 (2H, d, J = 8.7 Hz, C(3)H, C(5)H C₆H₄Br); 8.915 (1H, s NH); 9.587 (1H, s, NHO). Mass spectrum (FAB), m/z (I_{rel} , %): 323 [M+H]+ (11); 321 [M+H]+ (11); 91 Bn+ (100). Found, %: C 52.03; H 4.24; N 8.65. C₁₄H₁₃BrN₂O₂. Calculated, %: C 52.36; H 4.08; N 8.72.

N-Propyloxy-N'-4-bromophenylurea (18) The solution of *n*-propyloxyamine (0.696 g, 9.266 mmol) in benzene (3 mL) was added to the solution of 4-bromophenylisocyanate (1.332 g,

6.726 mmol) in benzene (12 mL), the reaction mixture was maintained at 20 °C during 12 h, then it was boiled during 0.5 h, cooled, the obtained precipitate was filtered off, washed by benzene (4 mL), dried under vacuum (5 mmHg), giving 1.290 g (70%) of *N*-propyloxy-*N*'-4bromophenylurea 18, colorless crystals, mp 114-116 °C. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 0.897$ $(3H, t, J = 7.2 \text{ Hz}, NO(CH_2)_2Me); 1.628 (2H, sex, J =$ 7.2 Hz, $NOCH_2CH_2Me$); 3.716 (2H, t, I = 7.2 Hz, $NOCH_2$); 7.431 (2H, d, I = 8.8 Hz, C(2)H, C(6)H C_6H_4Br); 7.569 (2H, d, I = 8.8 Hz, C(3)H, C(5)HC₆H₄Br);8.858 (1H, s NH); 9.548 (1H, s, NHO). Mass spectrum (FAB), $m/z(I_{rel},\%)$: 275 [M+H]⁺ (100); 273 [M+H]+ (97); 195(36). Found, %: C 43.94; H 4.92; N 10.06. C₁₀H₁₃BrN₂O₂. Calculated. %: C 43.98; H 4.80; N 10.26.

N-Ethoxy-N'-phenylurea (19). The solution of phenylisocyanate (801 mg, 6.720 mmol) in dry benzene (5 mL) was added to the solution of ethoxyamine (588 mg, 9.636 mmol) in dry benzene (6 mL). The reaction mixture was maintained in closed flask at 20 °C during 17 h, the obtained precipitate was filtered off, washed out by benzene (3ml), dried under vacuum (2 mmHg) yielding 725 mg (60%) of N-ethoxy-N'phenylurea 19, colorless crystals, mp 101-104 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 1.213 (3H, t, J = 7.2 Hz, $NOCH_2Me$); 3.823 (2H, q, J = 7.2 Hz, $NOCH_2Me$); 6.985 (1H, t, J = 7.6 Hz, C(4)H Ph); 7.257 (2H, t, I = 7.6, Hz C(3)H, C(5)H Ph); 7.567 (2H, d, J = 7.6 Hz, C(2)H, C(6)H Ph); 8.702 (1H, s,NH); 9.410 (1H, s, NHO). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.337$ (3H, t, J = 7.0 Hz, NOCH₂Me); 3.988 (2H, q, I = 7.0 Hz, $NO_{CH_2}Me$); 7.101 (1H, t, I= 7.4 Hz, C(4)H Ph); 7.331 (2H, td, ^{3}I = 8.0 Hz, ^{4}I = 0.8 Hz, C(3)H, C(5)H Ph); 7.477 (2H, dd, ${}^{3}J$ = 8.6Hz, $^{4}I = 1.2$ Hz,C(2)H, C(6)H Ph); 7.567 (1H, s, NH). Mass spectrum (FAB), $m/z(I_{rel},\%)$: 361 [2M+H]+ (4); 181 [M+H]+(100). Found, %: C 59.81; H 6.83; N 15.44. C₉H₁₂N₂O₂. Calculated, %: C 59.99; H 6.71; N 15.55.

N-n-Butyloxy-N'-phenylurea (20). The solution of phenylisocyanate (1.240g, 10.413 mmol) in benzene (5 mL) was added to the solution of n-butyloxyamine (0.975 g, 10.933 mmol) in benzene (8 mL), the reaction mixture was kept at 60 °C during 30 min, then the solvent was evaporated under vacuum (20 mmHg), hexane (8 mL) was added. After keeping at -5 °C during 20 h the obtained precipitate was filtered off, washed by cold (-5 °C) hexane, dried under vacuum (5 mmHg), giving 1.843 g (85 %) of *N-n*-butyloxy-*N'*-phenylurea 20, colorless crystals, mp. 77–79 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 0.900 (3H, t,

 3 J = 7.5 Hz, NO(CH₂)₃<u>Me</u>); 1.356 (2H, sex, 3 J = 7.5 Hz, NOCH₂CH₂CH₂Me); 1.608 (2H, quint, 3 J = 7.2 Hz, NOCH₂CH₂CH₂Me); 3.765 (2H, t, 3 J = 7.2 Hz, NOCH₂); 6.983 (1H, t, 3 J = 7.8 Hz, C(4)H Ph); 7.257 (2H, t, 3 J = 7.8 Hz, C(3)H, C(5)H Ph); 7.551 (2H, t, 3 J = 7.8 Hz, C(2)H, C(6)H Ph); 8.665 (1H, s, NH); 9.431 (1H, s, NHO). Mass spectrum (FAB), $m/z(I_{rel},\%)$: 209 [M+H]+ (100). Found, %: C 63.31; H 7.56; N 7.15. C₁₁H₁₆N₂O₂. Calculated, %: C 63.44; H 7.74; N 13.45.

Dimethyl *N-benzyloxy-N-(N'-4-bromophenyl*carbamoyl)phosphoramidate (22). The solution of t-BuOCl (89 mg, 0.820 mmol) in CH₂Cl₂ (3 mL) was added to the mixture of N-benzyloxy-N'-4bromophenylurea 17 (88 mg, 0.274 mmol) and CH₂Cl₂ (2 mL) at 15 °C. The reaction mixture was maintained at 15 °C for 1 h, then it was evaporated under vacuum, the residue was dried under vacuum (2 mmHg) for 10 min. The N-chloro-N-benzyloxy-N'-(4obtained brmophenyl)urea 21 (as white solid) was immediately disssolved in Et₂O (5mL), and the solution of trimethyl phosphite (93 mg, 0.750 mmol) in Et₂O (5mL) was added. The reaction mixture was maintained at 15 °C for 47 h, at 28 °C for 23 h, then reaction solution was evaporated under vacuum, the residue was dried at 80-85 °C under vacuum (2 mmHg) for 15 min. The obtained residue was extracted by hexane (5 mL) at 20 °C for 23 h, the formed precipitate was filtered off, dried under vacuum (2 mmHg), giving 82 mg (69.7%) of dimethyl *N*-benzyloxy-*N*-(*N*'-4bromophenylcarbamovl)phosphoramidate 89-92°C $(Et_2O$ colorless crystals, m.p. hexane). H NMR (400 MHz, CDCl₃, ppm): δ = 3.916 (6H, d, HP /= 12.0 Hz, P(0)(0Me)₂); 5.058 (2H, s, NOCH₂); 7.350 (2H, d, ${}^{3}J$ = 8.8 Hz, C(2)H, $C(6)H C_6H_4Br$; 7.382–7.436 (5H, m, C(3,4,5)H Phand C(3,5)H C_6H_4Br); 7.479-7.521 (2H, m, C(2)H, C(6)H Ph); 8.990 (1H, br. s, NH). ¹³C NMR (100.6093MHz, CDCl₃, ppm): δ =55.35 d, ^{CP}/= 6.04Hz, P(0)(0Me)₂;79.67 s, NOCH₂; 116.59 s, $C(4)_{g}$ -Br, $C_{6}H_{4}Br$; 121.30 s C(2)H, C(6)H $C_{6}H_{4}Br$; 128.87 s, 2C_{Ph}(H) Ph; 129.36 s, C(4)H Ph; 129.86 s, 2 $C_{Ph}(H)$ Ph; 132.09 s C(3)H, C(5)H C_6H_4Br ; 134.34 $C(1)_{q}$ Ph; 136.78 $C(1)_{q}$ $C_{6}H_{4}Br$; 151.85 d, ^{CP}*J*= 16.10 Hz, C=0. ³¹P NMR(161.9439 MHz, CDCl₃, ppm): 0.846. Mass spectrum (FAB), m/z (I_{rel} , %): 431 [M+H]+ (32); 429 [M+H]+ (27); 351 (12); 127 (64); 91 Bn+ (100). Found, %: C 44.58; H 4.61; N 6.37. C₁₆H₁₈BrN₂O₅P. Calculated, %: C 44.77; H 4.23; N 6.53.

The hexane extract was evaporated under vacuum, the residue was dried at 80–85 °C under vacuum (2 mmHg) and crystallized from cold

hexane, additionally yielding 19 mg (16.1 %) of compound 22.

Dimethyl N-(N'-4-bromophenylcarbamoyl)-Npropyloxyphosphoramidate (24). The solution of t-BuOCl (120 mg, 1.109 mmol) in CH₂Cl₂ (3 mL) was added to the solution of N-propyloxy-N'-(4bromophenyl)urea 18 (101 mg, 0.370 mmol) in CH₂Cl₂ (4 mL) at 20 °C. The reaction mixture was maintained at 20 °C for 1 h, then it was evaporated under vacuum, the residue was dried under vacuum (2 mmHg) for 10 min. The obtained N-chloro-N-propyloxy-N'-(4brmophenyl)urea 23 (as colorless oil) was immediately disssolved in Et₂O (5mL), and the solution of trimethyl phosphite (92 mg, 0.740 mmol) in Et₂O (5mL) was added. The reaction mixture was maintained at 20 °C for 22 h, then reaction solution was evaporated under vacuum. the residue was dried at 90-95 °C under vacuum (2 mmHg) for 10 min. The obtained residue was stirred with hexane (5 mL) at 20 °C for 1 h, the hexane extract A was separated off, the remaining oil was dried under vacuum (2 mmHg), giving 34 mg (24.1 %) of dimethyl N-(N'-4-bromophenylcarbamoyl)-N-

propyloxyphosphoramidate 24, colorless viscous oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ =1.015 (3H, t, $^{3}I=$ 7.6Hz, NOCH₂CH₂Me); 1.729 (2H, sex, $^{3}I=$ 7.12Hz, NOCH₂CH₂Me); 3.912 (6H, d, HP J= 11.6Hz, $P(0)(OMe)_2$; 4.095 (2H, t, 3 /= 6.6Hz,NOCH₂); 7.377 (2H, d, 3 /= 9.6Hz, C(2)H, C(6)HC₆H₄Br); 7.412 (2H, d, ${}^{3}J$ = 9.6Hz, C(3)H, C(5)HC₆H₄Br); 9.068 (1H, br. s, NH). ¹H NMR (400 MHz, $(CD_3)_2SO$, ppm): $\delta = 0.933$ (3H, t, $^3J = 7.6$ Hz, NOCH₂CH₂Me); 1.688 (2H, sex, ${}^{3}J$ = 7.12 Hz, 3.803 (6H, d, ^{HP}J = 12.0Hz, $NOCH_2CH_2Me$); $P(O)(OMe)_2$; 3.942 (2H, t, 3J = 6.8Hz, $NOCH_2$); 7.497 (2H, d, ${}^{3}J$ = 9.2Hz, C(2)H, C(6)HC₆H₄Br); 7.5302 (2H, d, 3 /= 9.2Hz, C(3)H, C(5)HC₆H₄Br); 9.369 (1H, br. s, NH). 13C NMR (100.6093 MHz, ppm): $\delta = 10.53$, s, Me; $NOCH_2CH_2Me$; 55.29 d, CPJ = 6.04Hz, $P(O)(OMe)_2$; 79.09 s, NOCH₂; 116.48 s, $C(4)_{a}$ -Br, $C_{6}H_{4}Br$; 121.23 s C(2)H, C(6)H C₆H₄Br; 132.08 s C(3)H, $C(5)H C_6H_4Br$; 136.85 s $C(1)_q C_6H_4Br$; 151.83 d, ^{CP}/= 17.10 Hz, C=0. ³¹P NMR (161.9439 MHz, CDCl₃, ppm): 0.809. Mass spectrum (FAB), $m/z(I_{\rm rel},\%)$: 383 [M+H]+ (87); 381 [M+H]+ (100); 183 (83); 126 (99). Found, %: C 37.73; H 4.82; N 7.26. C₁₂H₁₈BrN₂O₅P. Calculated, %: C 37.81; H 4.76; N 7.35.

The hexane extract **A** was evaporated under vacuum, the residue was dried at 85–90 °C under vacuum (2 mmHg) for 15 min, additionally giving 88 mg (62.4 %) of compound **24**.

N-ethoxy-N-(N'-phenylcarbamoyl)-Dimethyl phosphoramidate (25). The solution of t-BuOCl (57 mg, 0.5216 mmol) in Et₂O (6 mL) was added to the mixture of *N*-ethoxy-*N*'-phenylurea **19** (94 mg, 0.5216 mmol) and Et₂O (4 mL) at -32 °C at stirring. The reaction mixture was maintained at -32 - -25 °C for 1 h 20 min, then the solution of trimethyl phosphite (140 mg, 1.128 mmol) in Et₂O (5 mL) was slowly added. The reaction mixture was maintained at -25 °C for 24 h, then solid phase was filtered off, the Et₂O-filtrate was evaporated under vacuum, the residue was dried at 90-95 °C under vacuum (2 mmHg) for 10 min. The obtained residue was extracted by hexane (7 mL) at 20 °C for 22 h, the hexane extract was separated from residue A, evaporated under vacuum, the obtained residue was dried at 90 °C under vacuum (2 mmHg) for 10 min, giving 46 mg (30.6%)dimethyl *N*-ethoxy-*N*-(*N*'phenylcarbamoyl)phosphoramidate 25, colorless oil that solidifies over time in the cold into colorless amorphous substance. ¹H NMR (400 MHz, CDCl₃, ppm): δ =1.339 (3H, t, 3 /=7.2 Hz, NOCH₂Me) ; 3.920 (6H, d, ^{HP}J = 11.6 Hz, P(0)(OMe)₂); 4.140 $(2H, q, ^3J = 7.2 Hz, NOCH_2); 7.086 (1H, t, ^3J = 7.2 Hz,$ C(4)H Ph); 7.137 (2H, t, 3j= 8.0 Hz, C(3)H, C(5)H Ph); 7.488 (2H, dd, 3/= 8.4Hz, 4/= 1.2Hz, C(2)H, C(6)H Ph); 8.968 (1H, br. s, NH).13C NMR (100. 6093 MHz, CDCl₃, ppm): δ =13.64 s, NOCH₂Me; 55. 20 d, ^{CP}J = 6.04 Hz, $P(0)(OMe)_2$; 73.19 s, $NOCH_2$; 119.72 s, C(2)H, C(6)H Ph; 123.99 s, C(4)H Ph; 129.12 s, C(3)H, C(5)H Ph; 137.62C(1)_q Ph; 151. 93 d, ^{CP}/= 16.10 Hz, C=0. ³¹P NMR (161.9439 MHz , CDCl₃, ppm): 0.927. Mass spectrum (FAB), m/z(I_{rel} ,%): 289 [M+H]+ (100); 169 (67); 163 (39); 126 (95). Found, %: C 45.69; H 6.05; N 9.63. C₁₁H ₁₇N₂O₅P. Calculated, %: C 45.84; H 5.94; N 9.72.

The residue **A** was dissolved in boiling hexane, the solution was maintained at -32 °C for 48 h, the formed precipitate was filtered off. The hexane filtrate was evaporated under vacuum, the obtained residue was dried under vacuum (2 mmHg), additionally yielding 37 mg (24.6 %) of compound **25**.

Dimethyl N-n-butyloxy-N-(N'-phenylcarbamoyl)phosphoramidate (26). The solution of t-BuOCl (55 mg, 0.50417 mmol) in Et₂O (4 mL) was added to the solution of N-n-butyloxy-N'-phenylurea 20 (105 mg, 0.505417 mmol) in Et₂O (7 mL) at -34 °C at stirring. The reaction mixture was maintained at -34– -30 °C for 1 h, then the solution of trimethyl phosphite (125 mg, 1.008 mmol) in Et₂O (5 mL) was slowly added. The reaction mixture was maintained at -25 °C for

24 h, then it was evaporated under vacuum, the residue was dried at 90-95 °C under vacuum (2 mmHg) for 10 min. The obtained residue was extracted by hexane (8 mL) at 14 °C for 18 h, the hexane extract was separated off, evaporated under vacuum, the residue was dried under vacuum (2 mmHg), yielding 126 mg (79.0 %) of dimethyl *N-n*-butyloxy-*N-(N'*-phenylcarbamoyl)phosphoramidate 26, colorless oil.¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 0.966$ (3H, t, $^{3}J = 7.2$ Hz, NO(CH₂)₃Me); 1.471 (2H, sex, ^{3}I = 7.2 Hz, $NOCH_2CH_2CH_2Me$); 1.698 (2H, quint, $^3J=7.2$ Hz, NOCH₂CH₂CH₂Me); 3.915 (6H, d, HPJ= 12.0Hz, $P(0)(OMe)_2$; 4.081 (2H, t, 3 /= 6.8Hz, $NOCH_2$); 7.084 (1H, td, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.2 Hz, C(4)H Ph); 7.313 (2H, t, ^{3}I = 8.0 Hz, C(3)H, C(5)H Ph); 7.485 $(2H, dd, ^3/= 7.6 Hz, ^4/= 0.8 Hz, C(2)H, C(6)H Ph);$ 8.939 (1H, br. s, NH).¹³C NMR (100.6093 MHz, CDCl₃, ppm): δ =13.98 s, NO(CH₂)₃Me; 19.34 s, CH₂; 30.34 s, CH₂; 55.17 d, ^{CP}J = 6.04 Hz, $P(0)(OMe)_2$; 77.38 s, $NOCH_2$; 119.71s, C(2)H, C(6)HPh; 123.99 s, C(4)H Ph; 129.15 s, C(3)H, C(5)HPh; 137.67 s C(1)_aPh; 151.93 d, ^{CP}I = 17.10 Hz, C=0.31P NMR (161.9439 MHz, CDCl₃, ppm): 1.010. Mass spectrum (FAB), $m/z(I_{rel},\%)$: 317 [M+H]+ (100). Found, %: C 49.25; H 6.85; N 8.71. C₁₃H₂₁N₂O₅P. Calculated, %: C 49.37; H 6.69; N 8.86.

Dimethyl N-ethoxy-N-(N'-4*chlorophenylcarbamoyl)phosphoramidate* The solution of t-BuOCl (146 mg, 1.348 mmol) in CH₂Cl₂ (2 mL) was added to the mixture of Nethoxy-N'-phenylurea **19** (81 mg, 0.449 mmol) and CH₂Cl₂ (1 mL) at 10 °C at stirring. The reaction mixture was maintained at 10 °C for 23 h, then the solution of t-BuOCl (90mg, 0.829 mmol) in CH₂Cl₂ (1 mL) was added, the reaction mixture was maintained at 9 °C for 1 h. Then the reaction mixture was evaporated under vacuum, the residue was dissolved in in Et₂O (3 mL) and trimethyl phosphite (101 mg, 0.814 mmol) in Et₂O (3 mL) was added. The reaction mixture was maintained at 10 °C for 48 h, then it was evaporated under vacuum, the residue was dried at 85 °C under vacuum (2 mmHg) for 10 min. The obtained residue was extracted by boiling hexane (10 mL), the hexane extract cooled to 0 °C. The obtained precipitated was filtered off, dried under vacuum, yielding 29 mg (19.9%) of N-ethoxy-N-(N'-4-chlorophenylcarbadimethyl moyl)phosphoramidate 28, colorless oil. H NMR (400 MHz, CDCl₃, ppm): δ =1.327 (3H, t, 3 *J*= 7.2Hz, $NOCH_2Me$); 3.916 (6H, d, HPI= 11.6 Hz, $P(0)(OMe)_2$; 4.123 (2H, q, 3J = 7.2Hz, NOCH₂); 7.265 (2H, d, ${}^{3}J$ = 8.8Hz, C(2)H, C(6)H C₆H₄NO₂);

7.433 (2H, d, ${}^{3}J$ = 8.8Hz, C(3)H, C(5)H C₆H₄NO₂); 9.077 (1H, br. s, NH). ${}^{13}C$ NMR (100.6093 MHz, CDCl₃, ppm): δ =13.65 s, NOCH₂Me; 55.31 d, ${}^{CP}J$ = 5.03 Hz,P(0)(OMe)₂; 73.21 s, NOCH₂; 120.94 s, C(2)H, C(6)HPh; 123.99 s, 128.96s C(4)–Cl C₆H₄Cl; 129.13 s C(3)H, C(5)H C₆H₄Cl; 136.32s C(1)_q C₆H₄Cl; 151.89 d, ${}^{CP}J$ = 16.10Hz, C=0. ${}^{31}P$ NMR (161.9439 MHz, CDCl₃, ppm): 0.730. Found, %: C 40.72; H 5.13; N 8.39. C₁₁H₁₆ClN₂O₅P. Calculated, %: C 40.94; H 5.00; N 8.68.

The hexane filtrate was evaporated under vacuum, the residue was dried under vaccum (2 mmHg), additionally yielding 45 mg (44.8 %) of dimethyl *N*-ethoxy-*N*-(*N*'-4-chlorophenyl-carbamoyl)phosphoramidate **28**.

N-Acetoxy-N-n-butyloxyurea (29a) interaction with trimethyl phosphite. The solution of trimethylphosphite (146 mg, 1.176 mmol) in Et₂O (3 mL) was added to the solution of *N*-acetoxy-*Nn*-butyloxyurea **29a** (66 mg, 0.347 mmol) [19] in Et₂O (5 mL). The reaction mixture was maintained at 20 °C for 115 h, then it was evaporated under vacuum, the residue was maintained at 25 °C at stirring under vacuum (2 mmHg) for 2h, yielding 65 mg (98.5%) of unreacted starting N-acetoxy-N-n-butyloxyurea **29a.** ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 0.940$ (3H, t, ${}^{3}J$ = 7.6Hz, NO(CH₂)₃CH₃); 1.386 (2H, sex, $^{3}J=7.6 \text{ Hz}$, NO(CH₂)₂CH₂Me); 1.670 (2H, quint, $^{3}J=$ $NOCH_2CH_2CH_2Me$); 2.181 7.2 Hz, (3H, s, NOC(O)Me); 4.087 (2H, t, ^{3}J = 6.8 Hz, $NOCH_{2}$); 5.579 (1H, br. s, NH); 5.963 (1H, br. s, NH).

N-Acetoxy-N-n-octyloxyurea (**29b**) interaction with trimethyl phosphite. The solution of trimethylphosphite (34 mg, 0.274 mmol) in Et₂O (3 mL) was added to the solution of *N*-acetoxy-*N-n*-octyloxyurea **29b** (17 mg, 0.0690 mmol) in Et₂O (3 mL). The reaction mixture was

maintained at 18 °C for 73 h, then it was evaporated under vacuum, the residue was maintained at 25–30 °C at stirring under vacuum (2 mmHg) for 2h, yielding 17 mg (100 %) of unreacted *N*-acetoxy-*N*-*n*-octyloxyurea **29b**. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 0.875 (3H, t, ³*J* = 6.8Hz, NO(CH₂)₇CH₃); 0.858–0.892 (10H, m, NO(CH₂)₂(CH₂)₅Me); 1.677 (2H, quint, ³*J* = 7.2Hz, NOCH₂CH₂(CH₂)₅Me); 2.180 (3H, s, NOC(0)Me); 4.076 (2H, t, ³*J* = 7.2Hz, NOCH₂); 5.533 (1H, br. s, NH); 5.988 (1H, br. s, NH).

N-Acetoxy-N-ethoxy-N'-benzylurea interaction with trimethyl phosphite. The solution of trimethylphosphite (64 mg, 0.516 mmol) in Et₂O (3 mL) was added to the solution of Nacetoxy-N-ethoxy-N'-benzylurea **29c** (48 mg. 0.190 mmol) [20] in Et_2O (5 mL). The reaction mixture was maintained at 18 °C for 68 h, then it was evaporated under vacuum, the residue was maintained at 25 °C at stirring under vacuum (2 mmHg) for 2h, yielding 47.5 mg (99 %) of unreacted *N*-acetoxy-*N*-ethoxy-*N*'-benzylurea **29c.** ¹H NMR (400 MHz, CDCl₃, ppm): δ =1.285 (3H, t, ${}^{3}J$ = 7.2Hz, NOCH₂CH₃); 2.182 (3H, s, NOC(0)Me); 4.125 (2H, q, ${}^{3}J$ = 7.2Hz, NOCH₂); 4.468 (2H, d, 3 /= 6.4Hz, PhCH₂NH); 6.417(1H, br. s, NH); 7.280-7.378 (5H, m, Ph).

Results and discussion

N-Alkoxy-*N*-chloro-*N*'-(4-bromophenyl)ureas **17, 18** are stable only for a short time at room temperature [7]. To prevent the decomposition, these compounds were immediately treated with trimethyl phosphite in ether solution after isolation at room temperature. Thus, dimethyl *N*-alkoxy-*N*-(*N*'-4-bromophenylcarbamoyl)phosphoramidates **22, 24** were obtained in high yields (Scheme 4).

Scheme 4. The synthesis of dimethyl *N*-alkoxy-*N*-(*N*'-4-bromophenylcarbamoyl)phosphoramidates R=Bn (22, 86 %), R=Pr (24, 86 %)

Chlorination of *N*-alkoxy-*N*'-phenylureas **19,20** by *tert*-butyl hypochlorite gives unstable *N*-alkoxy-*N*-chloro-*N*'-phenylureas **27a,b** (Scheme 5). But we had obtained *N*-alkoxy-*N*-chloro-*N*'-phenylureas **27a,b** at – 30 °C in ether followed by treatment with trimethyl phosphite in these conditions. As a result of this procedure,

dimethyl *N*-alkoxy-*N*-(*N*'-phenylcarbamoyl)phosphoramidates **25**, **26** were obtained by a one-pot synthesis. This reaction represents the first example of the nucleofilic substitution at the nitrogen atom in the highly unstable *N*-alkoxy-*N*-chloro-*N*'-phenylureas.

Journal of Chemistry and Technologies, 2025, 33(3), 579-587

Ph
$$\stackrel{\text{H}}{\longrightarrow}$$
 $\stackrel{\text{Cl}}{\longrightarrow}$ $\stackrel{\text{Cl}}{\longrightarrow}$ $\stackrel{\text{Cl}}{\longrightarrow}$ $\stackrel{\text{Cl}}{\longrightarrow}$ $\stackrel{\text{P}(O)(OMe)_2}{\longrightarrow}$ $\stackrel{\text{P}(O)(OMe)_2}$

Scheme 5. One-pot synthesis of dimethyl *N*-alkoxy-*N*-(*N*'-phenylcarbamoyl)phosphoramidates 25,26, R=Et (27a, 25, 55 %); n-Bu (27b, 26, 79 %)

Careful optimization of reaction conditions allowed us to prevent the premature decomposition of the initial *N*-alkoxy-*N*-chloro-*N*'-4-bromophenylureas **21**, **23** and *N*-alkoxy-*N*-chloro-*N*'-phenylureas **27a,b**.

Heating of *N*-ethoxy-*N*-chloro-*N*'-phenylurea **27a** to room temperature followed by repeated

N-chlorination and subsequent treatment with trimethyl phosphite allows the synthesis dimethyl N-ethoxy-N-(N'-4-chlorophenylcarbamoyl)phosphoramidate **28** from N-ethoxy-N'-phenylurea **19** in a one-step synthesis (Scheme 6):

$$\begin{array}{c} \begin{array}{c} H \\ H \\ O \end{array} \\ \begin{array}{c} C \\ C$$

Scheme 6. The one-step synthesis of dimethyl *N*-ethoxy-*N*-(*N*'-4-chlorophenylcarbamoyl)phosphoramidate 28 from of *N*-ethoxy-*N*'-phenylurea 19

Unlike *N*-alkoxy-*N*-chloroureas, *N*-acetoxy-*N*-alkoxyureas **29a-c** do not react with

trimethylphosphite under the same conditions (Scheme 7).

$$R'$$
 N
 OR
 $P(OMe)_3$
 Et_2O

R'=H, $R=n-C_4H_0(a)$, $n-C_8H_{17}(b)$, R'=Bn, R=Et(c)

Scheme 7. N-Acetoxy-N-alkoxyureas 29a-c interaction with trimethyl phosphite

The structure of dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates **22**, **24**, **25**, **26**, **28** was proven by the ¹H, ¹³C, ¹³P NMR spectra and mass spectra.

The ¹H NMR spectra of compounds 22, 24, 25,

26, 28 demonsrate the following general characteristics: 1) a doublet of $(MeO)_2(O)$ P-moiety, 2) a triplet of NOCH₂ group; 3) a broad singlet of NH moiety (Table 1).

Table 1
The typical ¹H NMR and ³¹P NMR chemical shifts of dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates 6, 8,
9, 11-13 [4] and 22, 24-26, 28 (ppm, in CDCl₃)

	7, 11-1	7, 11-13 [4] and 22, 24-20, 20 (ppin, in CDCi3)			
Compound	$P(O)(OMe)_2(HPJ,Hz),d$	NOCH ₂ , NOMe s*, OCH ₂ Ph**	NH	³¹ P NMR ppm	
6 [4]	3.945(11.6)	3.920s*	9.719	0.24	
8 [4]	3.941(11.6)	4.135t	9.714	0.38	
9[4]	3.935(12.0)	5.067s**	9.590	0.47	
11 [4]	3.853(11.2)	4.344t	8.830	-0.02	
12 [4]	3.932(12.0)	4.404 sept	9.315	1.30	
13 [4]	3.936(12.0)	4.064t	9.694	0.45	
22	3.916(12.0)	5.058 s**	8.990	0.85	
24	3.912(11.6)	4.095 t	9.068	0.81	
25	3.918(11.6)	4.138t	8.961	0.93	
26	3.915(12.0)	4.081t	8.939	1.01	
28	3.916(11.6)	4.123q	9.077	0.73	

Dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)-phosphoramidates **6**, **8**, **9**, **11–13** [4,5], **22**, **24–26**, **28** are characterized by a singlet of NH hydrogen atom in the region of 8.961–9.869 ppm.

In the ^{31}P NMR spectra of dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates **6**, **8**, **9**, **11–13**, **22**, **24–26**, **28**, the chemical shifts of the phosphorus atom lie in the range of -0.02-1.30 ppm.

The ^{13}C NMR spectra of compounds **6–13** and **22, 24–26, 28** exhibit numerous common features and characteristics. They include the chemical shifts of the carbon atoms of NOMe or NOCH₂ groups, the carbon atoms of dialkoxyphosphoryl group (a doublet of the P(0)(OMe)₂ fragment or two doublets of the P(0)(OCH₂Me)₂ fragment), and the doublet of the carbon atom of the C=0 bond (Table 2).

Table 2

The typical ¹³C NMR chemical shifts of carbon atoms of dialkyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates 6–13 [4.5] and 22, 24–26, 28 (ppm. in CDCl₃)

15 [4,5] and 22, 24–20, 20 (ppin, in CDCi3)							
Comp.	13C NMR, ppm						
	P(0)(0Me)2, d	P(0)(0Et)2, d, d	NOCH2Alk, NOMe*, NO <u>CH2</u> Ph** s	C=0, d			
6 [4]	55.50	-	64.80*	151.25			
7 [4]	-	16.19, 65.68	64.69*	151.36			
8 [4]	55.51	-	73.22	151.56			
9[4]	55.04	-	79.05**	152.28			
10 [4]	=	16.25, 65.68	79.41**	151.64			
11 [4]	55.46	-	78.13	151.64			
12 [4]	55.49	=	80.20 (OCH)	152.72			
13 [4]	54.45	-	77.16	151.54			
22	55.35	-	79.67**	151.85			
24	55.29	-	79.09	151.83			
25	55.20	-	73.19	151.93			
26	55.17	-	77.38	151.93			
28	55.31		73.21	151.89			

Dialkyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates **6–13** [4,5] and **22, 24–26, 28** are characterized by a doublet of the carbon atom of the C=O group in the region of 151.25–152.72 ppm.

For dimethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates **6**, **8**, **9**, **11**–**13** [4] and **22**, **24**–**26**, **28**, the doublet of $(MeO)_2(O)P$ fragment is located in the range of 54.45-55.51 ppm. For diethyl *N*-alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates **7**, **10**, two doublet of $(EtO)_2(O)P$ group are located at 16.19–16.25 pppm and 65.35-65.68 ppm, respectively.

The mass spectra of compounds **22**, **24–26** show peaks of protonated molecular ion $[M+H]^+$ at the corresponding m/z values with high

References

- [1] Ghosh, A.K., Brindisi, M. (2019). Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. *J Med Chem.* 63(6), 2751–2788. doi: 10.1021/acs.jmedchem.9b01541
- [2] Itumoh, E.J., Data, S., Leitao, E.M. (2020). Opening up the Toolbox: Synthesis and Mechanism of Phosporamidates. *Molecules*. 25(16), 3684. https://doi.org/10.3390/molecules25163684
- [3] Shtamburg, V.G., Klots, E.A., Shtamburg, V.V., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V. (2023). Nucleophilic substitution at nitrogen atom. *N*-Alkoxy-*N*-(dimethoxyphosphoryl)ureas, synthesis and structure. *J. ,Mol. Structure*, 1277, 134865. https://doi.org/10.1016/j.molstruc.2022.134865

intensity.

Conclusions

For the first time, we have found that the interaction of unstable *N*-alkoxy-*N*-chloro-*N'*-arylureas **21**, **23**, **27**, **28** with trimetyl phosphite under mild conditions allows to synthesize of previously inaccessible dimethyl *N*-alkoxy-*N*-(*N'*-arylcarbamoyl)phosphoramidates **22**, **24**, **25**, **26**, **28**. Remarkably, *N*-acetoxy-*N*-alkoxyureas **29a-c** do not react with trimethylphosphite under the same conditions. The structure of the synthesized dimethyl *N*-alkoxy-*N*-(*N'*-arylcarbamoyl)phosphoramidates **22**, **24**–**26**, **28** was confirmed by ¹H, ¹³C, ³¹P NMR spectra, as well as by mass spectra.

- [4] Shtamburg V.G., Klots, E.A., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V., Kravchenko, S.V. (2024). Interaction of N-Alkoxy-N-chloro derivatives of amides, sulfonamides and ureas with trialkyl phosphites. XXVI Ukrainian Conference of Organic Chemistry and Biochemistry, Uzhgorod, 16-20 September 2024, Thesis, D-5. (In Ukrainian)
- 5] Shtamburg, V.G., Klots, E.A., Anishchenko, A.A., Shtamburg, V.V., Shishkina, S.V., Mazepa, A.V., Kravchenko, S.V. (2025). Interaction of *N*-Alkoxy-*N*-chloro-*N*'-arylureas with Trialkyl Phosphites as Route to Dialkyl *N*-Alkoxy-*N*-(*N*'-arylcarbamoyl)phosphoramidates. Synthesis. *Voprosy*

- khimii i khimicheskoi tecknologii Issues of Chemistry and Chemical Technology, 2025, (5): in press.
- [6] Perronnet, J., Demoute, J.P. (1982). Approach to the 1-methoxy-2-benzimidazolinones. *Gazzet. Chim. Ital.*, 112, 507–511.
- [7] Shtamburg, V.G., Tsygankov, A.V., Gerasimenko, M.V., Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Kostyanovsky, R.G. (2011). New approach to *N,N*-dialkoxy-*N'*-arylureas and *N,N*-dialkoxycarbamates. *Mendeleev Commun.*, 21(1), 50–52. https://doi.org/10.1016/j.mencom.2011.01.021
- [8] Glover, S.A. (1998). Anomeric Amides Structure, Properties and Reactivity. *Tetrahedron*, 54(26), 7229–7272. https://doi.org/10.1016/S0040-4020(98)00197-5
- [9] Cavanagh, K.L., Glover, S.A., Price, H.L., Schumacher, R.R. (2009). S_N2 Substitution reactions at the Amide Nitrogen in the Anomeric Mutagens, N-Acyloxy-N-alkoxyamides. Aust. J. Chem., 62(7), 700– 710. https://doi.org/10.1071/CH09166
- [10] Glover, S.A. (2009). N-Heteroatom-substituted hydroxamic esters, in *The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids*. Eds Rappoport, Z., Liebman, J. F., John Wiley and Sons, New York. PATAI'S Chemistry of Funcional Groups https://doi.org/10.1002/9780470682531.pat0470
- [11] Glover, S.A., Rosser, A.A. (2018). Heteroatom Substitution at Amide Nitrogen Resonance Reduction and HERON Reactions of Anomeric Amides. *Molecules*, 23(11), 2834. https://doi.org/10.3390/molecules23112834
- [12] Cavanagh, K.L. Glover, S.A., Price, H.L. (2009). Schumacher, S_N2 Substitution reactions at the Amide Nitrogen in the Anomeric Mutagens, *N*-Acyloxy-*N*-alkoxyamides. *Aust. J. Chem.*, *62*(7): 700–710. https://doi.org/10.1071/CH09166
- [13] Shtamburg, V.G., Tsygankov, A.V., Shishkin, O.V., Zubatyuk, R.I., Uspensky, B.V., Shtamburg, V.V., Mazepa, A.V., Kostyanovsky, R.G. (2012). The properties and structure of *N*-chloro-*N*-methoxy-4-

- nitrobenzamide. *Mendeleev Commun.*, 22(3) 164–166. https://doi.org/10.1016/j.mencom.2012.05.019.
- [14] Digianantonio, K.M., Glover, S.A., Johns, J.P., Rosser, A.A. (2011). Synthesis and termal decomposition of *N,N*-dialkoxyamides. *Org. Biomol. Chem., 9,* 4116–4126. https://doi.org./10.1039/C10B00008I
- [15] Glover, S.A., White, J.M., Rosser, A.A., Digianantonio, K.M. (2011). Structure of N,N-Dialkoxyamides: Pyramidal Anomeric Amides with Low Amidicity. *J. Org. Chem., 76*(23), 9757–9763. https://doi.org./10.1021/jo201856u
- [16] Glover, S.A., Rosser, A.A., Taherpour, A., Greatrex, B. (2014). Formation and HERON Reactivity of Cyclic *N,N*-Dialkoxyamides. *Aust. J. Chem., 67*(3), 507–520 https://doi.org./10.1071/CH13557
- [17] Pu, X., Li, Q., Lu, Z., Yang, X. (2016). *N*-Chloro-*N*-methoxybenzenesulfonamide: A Chlorinating Reagent. *Eur. J. Org. Chem.*, (36), 5937–5940. https://doi.org/10.1002/ejoc.201601226
- [18] Wang Yu, Bi C., Kawamata Yu, Grant L.N., Samp L., Richardson P.F., Zhang S., Harper K.C., Palkowitz M.D., Vasilopoulos, A., Collins M.R., Oderinde, M.S., Tyrol, C.C., Chen, D., LaChapelle, E.A., Bailey, J.B., Qiao, J.X., Baran, P.S. (2024). Discovery of N–X anomeric amides as electrophilic halogenation reagents. *Nature Chemistry*, *16*, 1539–1545 https://doi.org/10.1038/s41557-024-01539-4.
- [19] Shtamburg, V.G., Tsygankov, A.V., Klots, E.A., Kostyanovsky, R.G. (2004). Acyloxy group exchange in N-acyloxy-N-alkoxyamides. Mendeleev Commun., 14(5) 208–210. https://doi.org/10.1070/MC2004v014n05ABEH0019
 - 08
- [20] Shtamburg, V.G., Shishkin, O.V., Zubatyuk, R.I., Kravchenko, S.V., Tsygankov, A.V., Mazepa, A.V., Klots, E.A., Kostyanovsky, R.G. (2006). N-Chloro-Nalkoxyureas: synthesis, structure and properties. Mendeleev Commun., 16(3) 323–325. https://doi.org/10.1070/MC2006v016n06ABEH0023 82