Electrochemical degradation of methyl tert-butyl ether

Authors

  • Aleksandr B. Velichenko Ukrainian State University of Chemical Technology, 8, Gagarin Ave., Dnipropetrovsk, 49005, Ukraine
  • Larisa V. Dmitrikova Oles Honchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk, 49010, Ukraine
  • Svetlana D. Kopteva Oles Honchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk, 49010, Ukraine
  • Gregory V. Korshin Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98115-2700, United States
  • Natalia O. Chuvasova Krivoy Rog Pedagogical Institute, Krivoy Rog National University, 54, Gagarin Str., Krivoy Rog, 50086, Ukraine

DOI:

https://doi.org/10.15421/081406

Keywords:

methyl tert-butyl ether (MTBE), electrochemical oxidation, lead dioxide anode, degradation mechanism

Abstract

In this paper, we have examined the performance of PbO2 anodes in the EC degradation of MTBE. It was shown that electrochemical oxidation of MTBE at lead dioxide anodes is effective method of anodic conversion of the organic pollutant to acetic acid as untoxic product. Proposed method is formally reagent treatment of water at the same time it does not need addition of any reagent in reaction media. All needed reagents formed directly from the solvent (water) thanks to electrochemical reactions. According to obtained data the main electrochemical stages of the process of anodic conversion of MTBE are formation of hydroxyl-radicals and molecular oxygen. Then formed compounds take part in stages of chemical MTBE oxidation and intermediate species that led to deeper oxidation to form acetic acid as the result. Proposed mechanism of MTBE electrochemical oxidation is in satisfactory agreement with experimental data. Dependence of MTBE conversion rate from the nature of micro-doped and composite lead dioxide anodes is explained by difference in hydroxyl-radical bond strength with an electrode surface that determined it reaction ability in secondary chemical reactions of organic compounds oxidation.

Author Biographies

Aleksandr B. Velichenko, Ukrainian State University of Chemical Technology, 8, Gagarin Ave., Dnipropetrovsk, 49005

Head of the Department of Physical Chemistry, Dr. Sc. (Chem.), Professor

Larisa V. Dmitrikova, Oles Honchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk, 49010

Associate Professor of Organic Chemistry Department, PhD in Organic Chemistry

Svetlana D. Kopteva, Oles Honchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk, 49010

Associate Professor of Organic Chemistry Department, PhD in Organic Chemistry

References

Froines J. Health and Environmental Assessment of MTBE-UC Toxics Sub-stances Research and Teaching Program, 1998, vol. 2, р.36.

Strategic Environemntal Research Development Program – SERDP Infor-mation Bulletin, 1999, vol. 1.

Mitani M.M., Keller A.A., Golden S.J., Hatfield A.K. Cheetham. Low tem-perature catalytic decomposition and oxidation of MTBE. Applied Catalysis B: Environ-mental, 2001, Vol.34, p. 87–95.

Graham J.L., Striebich R., Patterson C.L., Radha Krishman R.C. Haught. Haught MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere, 2004, vol.54, p. 1011-1016.

Xiang-Rong Xu, Zhen-Ye Zhao, Xiao-Yan Li, Ji-Dong Gu. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere, 2004, vol. 55, p. 73-79.

Kang J.W., Hoffmann M.R. Kinetics and Mechanism of the Sonolytic De-struction of Methyl tert-Butyl Ether by Ultrasonic Irradiation in the Presence of Ozone. Environ. Sci. Technol., 1998. vol.32, p. 3194-3199.

Wu T., Cruz V., Mezyk S., Cooper W.J., O’Shea K.E. Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways. Radiation Physics and Chemistry, 2002, vol.65, p. 335-341.

Safarzadeh-Amiri A. O3/ H2O2 tretment of Methyl tert-Butyl Ether (MTBE) in contaminated waters. Wat. Res., 2001, vol.35, p. 3706-3714.

Sutherland J., Adams C., Kekobad J. Fenton’s oxidation of MTBE with zero-valent iron. Wat. Res., 2004, vol.38, p. 193-205.

Bergendahl J.A., Thies T.P., Wat. Res., 2004, vol.38, p. 327-334.

Johnson D.C., Feng J., Houk L.L. Direct electrochemical degradation of or-ganic wastes in aqueous media. Electrochim. Acta., 2000, vol. 46, no. 2-3, p. 323-330.

Velichenko A.B. Mikromodifitsirovannyie dioksidnosvintsovyie elek-trodyi: Diss. … doktora him. nauk: 02.00.05. , Dnepropetrovsk, 2002, 337 s.

Obschaya organicheskaya himiya. Kislorodsoderzhaschie soedineniya, pod red. N.K. Kochetkova, A.I. Usova, M.: Himiya, 1982, vol. 2, 855 s.

Petriy O.A., Podlovchenko B. I., Elektrokataliticheskie protsessyi okisleniya i vosstanov-leniya organicheskih veschestv, v kn.: Kataliz. Fundamentalnyie i prikladnyie is-sledovaniya, M.: Izd-vo MGU ,1987, s. 39-64.

Rayd K., Kurs fizicheskoy organicheskoy himii, M.: Mir, 1972, s.353.

Todres Z.V. Ion-radikalyi v organicheskom sinteze , M.: Himiya, 1986, s. 43.

Organicheskaya elektrohimiya, pod red. Petrosyana V. A., Feoktistova L. G., M.: Himiya, 1988, vol. 2, 498 s.

Downloads

Published

2014-12-02