Stereochemistry of the epoxidation of bicyclo[2.2.1]hept-2-ene and its 7-syn-substituted derivatives. A DFT study

Authors

DOI:

https://doi.org/10.15421/081409

Keywords:

alkene epoxidation mechanism, peroxy acid, diradical transition state, density functional theory

Abstract

The stereochemical aspects of epoxidation of norbornene and its 7-syn-substituted derivatives by performic acid were investigated. Geometry and thermodynamic parameters of transition states and prereactive complexes were computed at the UBHandHLYP/6-31G(d) level of theory. It is shown that the transition states have a pronounced biradical character and a nearly coplanar orientation of the C=C bond and the molecule of performic acid. Transition state analysis revealed that, in the case of the syn-7-hydroxy derivative, the preference for the exo-approach of the oxidant can be explained by the stabilization of transition state with hydrogen bonding. In contrast, a chlorine atom or a methyl group at the 7-syn position facilitated the formation of endo-epoxides due to steric repulsion between the substituent and the oxidant.

Author Biographies

Sergiy I. Okovytyy, Oles Honchar Dnipropetrovsk National University, 72, Gagarin Ave., Dnipropetrovsk 49010

Head of the Organic Chemistry Department, Dr. Sc. in Chemistry. Professor

Oleksandr A. Zhurakovskyi, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138

Post-Doctoral Research Associate, Myers Lab, Department of Chemistry and Chemical Biology

References

Erol, S. Dogan, I. exo-Selective inverse-electron-demand hetero Diels-Alder reactions of norbornene with 5-benzylidine-2-arylimino-3-aryl-thiazolidine-4-thiones at room temperature. Tetrahedron, 2013, vol. 69, no 4, p. 1337–1344.

Lopez, S. A., Houk, K. N. Alkene Distortion Energies and Torsional Effects Control Reactivities, and Stereoselectivities of Azide Cycloadditions to Norbornene and Substituted Norbornenes. J. Org. Chem., 2013, vol. 78, no 5, p. 1778–1783.

De Jong, S., Wardrop, D. G., Nosal, D. J. Methods for direct alkene diamination, new & old. Tetrahedron, 2012, vol. 68, no 22, p. 4067–4105.

Dang, T. T., Boeck, F., Hintermann, L. Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. J. Org. Chem., 2011, vol. 76, no 22, p. 9353–9361.

Kas'yan, L. I. Prid'ma, S. A., Turov, A. V., Kas'yan, A. O. Epoxidation of N-(10-camphorsulfonyl)-endo-5-(aminomethyl)-bicyclo[2.2.1] hept-2-ene. Russ. J. Org. Chem., 2008, vol. 44, no 3, p. 467–469.

Gucma, M. Gołębiewski, W. M., Krawczyk, M. NMR Studies on 1,3-Dipolar Cycloaddition of Nitrile Oxides to Norbornenes. J. Braz. Chem. Soc., 2013, vol. 24, no 5, p. 805–813.

Khusnutdinov, R. I. Shchadneva, N. A., Mukhametshina, L. F Stereoselective exo-Addition to Norbornenes of Acetic Acid Generated from Vinyl Acetate in the Presence of Rhodium Complexes. Russ. J. Org. Chem., 2010, vol. 46, no 1, p. 54–58.

Khusnutdinov, R. I., Shchadneva, N. A., Khisamova, L. F., Dzhemilev, U. M. Hydroacetoxylation of Olefins with Acetic Acid Genetated in situ from Vinyl Acetate in the Presence of Ruthenium Complexes. Russ. J. Org. Chem., 2011, vol. 47, no 2, p. 155–160.

Bach, R.B., Dmitrenko, O., Adam, W., Schambony, S. Relative Reactivity of Peracids versus Dioxiranes (DMDO and TFDO) in the Epoxidation of Alkenes. A Combined Experimental and Theoretical Analysis. J. Am. Chem. Soc., 2003, vol. 125, no 4, p. 924–934.

Freccero, M., Gandolfi. R., Sarzi-Amade, Rastelli, M. A. Planar transition structures in the epoxidation of alkenes. A DFT study on the reaction of peroxyformic acid with norbornene derivatives. J. Org. Chem., 2002, vol. 67, no 24, p. 8519–8527.

Okovytyy, S. I. Theoretical investigation of the strain and reactivity of alicyclic olefins. Visn. Dnipropetr. Univ.: Khim., 1998, vol. 8, no 3, p. 99–104.

Shackelford, S. A., Yuen, G. H. A Novel Reaction of Xenon Trioxide: organic π-Bond Epoxidation. II. Concerning the Mechanism. J. Org. Chem., 1975, vol. 40, no 13. p. 1869–1875.

Awasthy, A. K., Rocek, J. The Nature of the Transition State in the Oxidation of Olefins by Chromium(VI). J. Am. Chem. Soc., 1969, vol. 91, no 4, p. 991–996.

Jefford, C. W., Boschung, A. F. The reaction of singlet oxygen with Norbornene. Helv. Chim. Acta., 1974, vol. 57, no 7, p. 2257–2261.

Kas'yan, L. I., Okovityi, S. I., Bomushkar', M. F., Driuk, V. G. Epoxidation of stereoisomeric substituted norbornenes. Kinetic and theoretical investigation. Russ. J. Org. Chem., 2000, vol. 36, no 2, p. 195–202.

Kasyan, L.I. Epoxidation of substituted norbornenes. stereochemical aspects accompanying intramolecular transformations. Usp. Khim., 1998, vol. 67, no 4, p. 299–316.

Zefirov, N. S., Kasyan, L. I., Gnedenkov, L. Yu. Shashkov, A. S., Cherepanova, E. G. Synthesis of norbornene endo-epoxide (3-oxatricyclo [3.2.1.02,4]octane). Tetrahedron Lett., 1979, vol. 20, no 11, p. 949–950.

Kasjan, L. I. Synthesis of cyclic diepoxides. Ukr. Khim. Zh., 1978, vol. 44, no 9, p. 956-959.

Brown, H.C., Hammar, J., Kawakami, J.H., Rothberg, I., Jagt, D. L. V. Exo-endo Relative Reactivities in three Representative U-Shahed Systems. The exo-endo Rate Ratio in Solvolysis as a Steric Phenomenon. J. Am. Chem. Soc., 1967, vol. 89, no 24, p. 6381–6382.

Brown, H. C. Liu, K.-T. Relative Rate of Exo Addition to Norbornene and 7,7-Dimethylnorbornene. A new Criterion for Distinguishing between Cyclic and Noncyclic Addition Processes. J. Am. Chem. Soc., 1971, vol. 93, no 26, p. 7335–7337.

Yang, X.-Q. Zeng, T., Du, L.-J., Zhu, J., Zhu, X. Synthesis and Characterization of Epoxides from Bornylene. Chemistry and Industry of Forest Products, 2012, vol. 32, no 1, p. 71–74.

Davis, D. D., Johnson, H.T. Synthesis of some trimethyltiunorbornanols. J. Organomet. Chem, 1975, vol. 86, no 1, p. 75–87.

Davis, D. D. Surmatis, A. J., Robertson, G.L. An estimate of the steric bulk of the trimethyltin group. J. Organomet. Chem., 1972. vol. 46, no 1, p. 9–12.

Wilcox, C. F. A systemized Method of Calculating Dipo1e Moments and Inter-nuclear Distances in Bicyclic Molecules. J. Am. Chem. Soc., 1960, vol. 82, no 2, p. 414–417.

Gassman, P. G., Schaffhausen, J. G., Raynolds, P.W. Neighboring Group Participation by the Carbon-Carbon Bond of an Epoxide synthesis and Solvolysis of Derivatives of 3-oxa-endo-tricyclo[3.2.1.02.4]octаn-anti-8-ol. J. Am. Chem. Soc., 1982, vol. 104, no 23, p. 6408–6411.

Hoffmann, R. W., Hauel, N., Landmann, B. Bicyclofulvenes. 9. Stereoelectronic Effects In Additions To 8-Methylenetricyclo[3.2.1.02,4]Octane Derivatives. Chem. Ber., 1983, vol. 116, no 1, p. 389–403.

Matoba, Y., Inoue, H., Akagi, J., Okabayashi, T., Ishii, Y., Ogawa, M. Epoxidation of allylic alcohols with hydrogenperoxide catalyzed by /PMo12O40// C2H5N+(CH2)15CH3)3. Synth. Commun., 1984, vol. 14, no 9, p. 865–873.

Richey, H. G., Moses, L. M., Hangeland, J. J. Stereochemistry of titanium-assisted additions of organoaluminum compounds to hydroxybicyclo[2.2.1]hept-2-enes. Organometallics, 1983, vol. 2, no 11, p. 1545–1549.

Okovytyy, S., Gorb, L., Leszczynski, J. A reinvestigation of the mechanism of epoxidation of alkenes by peroxy acids. A CASSCF and UQCISD study. Tetrahedron Lett., 2002, vol. 43, no 23, p. 4215–4219.

Okovytyy, S., Gorb, L., Leszczynski, J. Is 2-oxabicyclobutane formed during the reaction of peroxyacids with cyclopropene? A high-level ab initio study. Tetrahedron, 2002, vol. 58, no 43, p. 8751–8758.

Downloads

Published

2014-12-02