Theoretical study of ionization potentials of N-heterocyclic compounds

Authors

DOI:

https://doi.org/10.15421/081410

Keywords:

azacyclic compounds, DFT, ionization potential

Abstract

The ability to predict the redox properties is an important tool for study electron transfer processes occurring in the gas-phase (atmospheric chemistry) or in the condensed phase (electrochemistry, biochemistry). MPWB1K/6-31+G(d) and MPWB1K/tzvp theoretical models were found to provide reasonable accuracy of the prediction of ionization potentials for mono- and polycyclic azacompounds. The root mean square errors of the methods are 0.19 and 0.20, respectively. While the mean absolute deviation for both methods is the same and equals to 0.15 eV. These theoretical models were applied to predict ionization potentials for compounds not evaluated experimentally. Influence of substitutes and a number of nitrogen atoms on value of ionization potential was analyzed. Methyl-, and phenyl- groups, and fused benzo cycle decrease ionization potentials of N-heterocycles. Increase of amount of nitrogen atoms in five-membered cycles leads to significant enlargement of ionization potentials.

Author Biography

Liudmyla K. Sviatenko, Kirovohrad Volodymyr Vynnychenko State Pedagogical University, 1 Shevchenko St., Kirovohrad, 25006

Chemistry Department, Ph.D., Lecturer

References

Zhan C.-G., Nichols J. A., Dixon D. A., J. Phys. Chem. A, 2003, vol. 107, no 20, p. 4184-4195.

Uchimiya M., Gorb L., Isayev O., Qasim M. M., Leszczynski J., Environ Pollut., 2010, vol. 158, no. 10, p. 3048-3053.

Namazian M., Coote M. L., J. Phys. Chem. A, 2007, vol. 111, no. 30, p. 7227-7132.

Rayne S., Forest K., J. Chem. Eng. Data., 2011, vol. 56, no. 2, p. 350-355.

Fu Y., Liu L., Yu H.-Z., Wang Y.-M., Guo Q.-X., J. Am. Chem. Soc., 2005, vol. 127, no. 19, 7227-7234.

Xu W., Gao A., J. Mol. Struct: THEOCHEM, 2005, vol. 732, no. 1-3, p. 63-70.

Kose M., Theor. Chem. Acc., 2011, vol. 128, no. 2, p. 157-164.

Sviatenko L., Isayev O., Gorb L., Hill F., Leszczynski J., J. Comput. Chem., 2011, vol. 32, no. 10, p. 2195-2203.

Sviatenko L. K., Gorb L., Hill F., Leszczynski J., J. Comput. Chem., 2013, vol. 34, no. 13, p. 1094-1100.

Shankar R., Senthilkumar K., Kolandaivel P., Int. J. Quantum Chem., 2009, vol. 109, no. 4, p. 764-771.

Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al., Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford CT, 2009.

Zhao Y., Truhlar D. G., J. Phys. Chem. A, 2004, vol. 108, no. 33, p. 6908-6918.

NIST Chemistry WebBook. NIST Standard Reference Database, 2005, no. 69. Available at http://webbook.nist.gov/chemistry/.

Downloads

Published

2014-12-02