Features of interaction isomeric 4-aminotetrahydrothiophen-3-ol-1,1-dioxide with some C-electrophilic reagents
DOI:
https://doi.org/10.15421/081419Keywords:
sulfolane, 4-aminotetrahydrothiophen-3-ol-1, 1-dioxide, aminoalcoholAbstract
Sulfolane-containing aminoalcohols have a variety biological activity, as well as high synthetic potential and the ability to use sulfolanе-containing building blocks in the construction of new heterocyclic systems. Interaction of cis- and trans-4-aminotetrahydrothiophen-3-ol-1,1-dioxides with N,N-carbonyldiimidazole, Boc-anhydride, ethylchloroformate gives only the bis-derivatives, that are not capable of further cyclization to oxazolidinones. On the nitrogen atom in both isomeric aminoalcohols slightly larger charge than on the oxygen atom (calculated values of the charges within the NBO-theory) that explains the formation of the bis-derivatives in the interaction with strong C-electrophiles. Thus, using multistep procedure for the synthesis heterocyclic compounds (through the formation of urethanes, Boc-derivatives, etc.) are not effective for both isomers.
References
Kasyan, L. I., Palchikov, V. A., Tokar, A. V. Oxazahetero-cycles from Amino Alcohols, Epoxides and Aziridines. Dnipropetrovsk, Ukraine: DNU, 644 p. [in Russian]
Kas’yan, L. I., Pal’chikov, V. A. Cage-like amino alcohols. Synthesis, reactions, and application. Russ. J. Org. Chem., 2010, vol. 46, no. 1, p. 1–42.
Kas’yan, L. I., Okovityi, S. I., Kas’yan, A. O. Reactions of alicyclic epoxy compounds with nitrogen-containing nucleophiles. Russ. J. Org. Chem., 2004, vol. 40, no. 1, p. 1–34.
Lait, S. M., Rankic, D. A., Keay, B. A. 1,3-Aminoalcohols and their derivatives in asymmetric organic synthesis. Chem. Rev., 2007, Vol. 107, no. 3, p. 767–796.
Bergmeier, S. C. The synthesis of vicinal amino alcohols. Tetrahedron, 2000, Vol. 56, no. 17, p. 2561–2576.
Ager, D. J., Prakash, I., Schaad, D. R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. J. Chem. Rev., 1996, vol. 96, no. 2, p. 835–875.
Palchikov, V. A. Interaction epoxy sulfolanes with nitrogen-containing nucleophiles. Reactivity and biological activity of amino alcohols and related compounds. Visn. Dnipropetr. Univ.: Khim., 2010, vol. 18, no. 16, p. 63–78. [in Russian]
Zlenko, O. T., Mamchur, V. Y., Kas’yan, L. I., Palchikov, V. O., Prishlyak, I. S., Dulnev, P. G., Tarabara, I. M., Stefanik, M. I., Ukraine Patent No. 69026, 2012.
Zlenko, O. T., Mamchur, V. Y., Palchikov, V. O., Zarovna, I. S., Dulnev, P. G., Shastun, N. P., Ivanov, A. V., Ukraine Patent No. 74602, 2012.
Baricordi, N., Benetti, S., Bertolasi, V., De Risi, C., Pollini, G. P., Zamberlan, F., Zanirato, V. 1,4-Dithiane-2,5-diol as an efficient synthon for a straightforward synthesis of functionalized tetrahydrothiophenes via sulfa-Michael/-aldol-type reactions with electrophilic alkenes. Tetrahedron, 2012, vol. 68, no. 1, p. 208–213.
Zarovnaya, I. S., Zlenko, H. T., Palchikov, V. A. Synthesis and neurotropic activity of novel sulfolane-containing cage sulfonamides. Eur. Chem. Bull., 2014, vol. 3, no. 6, p. 543–547.
Palchikov, V. A., Zlenko, E. T., Dulnev, P. G., Kasyan, A. O., Krishchik, O. V., Prishlyak, I. S., Tarabara, I. N., Kasyan, L. I. Synthesis and neurotropic activity of compounds with norbornene and sulfolane fragments. Zh. Org. Farm. Khim., 2011, vol. 9, no. 4, p. 31–37. [in Russian]
Banert, K., Ihle, A., Kuhtz, A., Penk, E., Saha, B., Würthwein, E. U. Generation of highly strained 2,3-bridged 2H-azirines via cycloaddition reactions of 2-azidobuta-1,3-dienes and photolysis of the resulting cyclic vinyl azides. Tetrahedron, 2013, vol. 69, no 11, p. 2501–2508.
Yarmolchuk, V. S., Mukan, I.L., Grygorenko,O. O., Tolmachev, A.A., Shishkina, S. V., Shishkin, O. V., Komarov, I. V. An entry into hexahydro-2H-thieno[2,3-c]pyrrole 1,1-dioxide derivatives. J. Org. Chem., 2011, vol. 76, no. 17, p. 7010–7016.
Li, D. B., Rogers-Evans, M., Carreira, E. M. Synthesis of novel azaspiro[3.4]octanes as multifunctional modules in drug discovery. Org. Lett., 2011, vol. 13, no. 22, p. 6134–6136.
Yakovlev, V. V., Shklyarenko, A. A. 3,4-Dibromsulfolane in S,N-tandem heterocyclizations. Synthesis and crystalline structure of tetrahydrothienothiazinopurines. Russ. J. Org. Chem., 2008, vol. 44, no. 4, p. 629–631.
Shklyarenko, A. A., Yakovlev, V. V. 3,4-Dibromotetrahydro-λ6-thiophene 1,1-dioxide in S,N-tandem heterocycliczations. Synthesis of tetrahydrothienothiazolopyrimi-dines. Russ. J. Org. Chem., 2007, vol. 43, no. 4, p. 639–640.
Shaitanov, P. V., Lukashov, S. S., Turov, O. V., Yarmoluk, S. M. Synthesis and structural study of N-substituted-1,7-dithia-4-azaspiro[4.4]nonan-3-one 7,7-dioxides. Ukr. Bioorg. Acta, 2007, no. 2, p. 56–61. [in Russian]
Shaitanov, P. V., Bezugly, Yu. V., Sapelkin, V. M., Yarmoluk, S. M. Synthesis of 4-substituted 1-arylhexa-hydro-thieno[3,4-b]pyrazin-2(1H)-one 6,6-dioxides. Ukr. Bioorg. Acta, 2006, no. 2, p. 40–46. [in Russian]
Shaitanov, P. V., Bezugly, Yu. V., Charchenko, V. M., Lukashov, S. M., Yarmoluk, S. M. Synthesis and structural characteristics of 4-(2-phenylethyl)-1,7-dithia-4-azaspiro-[4.4]nonan-3-one 7,7-dioxide. Ukr. Bioorg. Acta, 2005, no. 2, p. 39–42. [in Russian]
Zarovnaya, I. S., Sadkova, I. V., Kulakov, I. V., Dulnev, P. G., Palchkov, V. A. New oxazolines with sulfolane frame. Visn. Dnipropetr. Univ.: Khim., 2013, vol. 21, no. 20, p. 21–30. [in Russian]
Zappia, G., Cancelliere, G., Gacs-Baitzet, E. Oxazolidin-2-one ring, a popular framework in synthetic organic chemistry Part 2. Applications and Modifications. Curr. Org. Synth., 2007, vol. 4, no. 3, p. 238–307.
Mukhtar, T. A., Wright, G. D. Streptogramins, oxazolidi-nones, and other inhibitors of bacterial protein synthesis. Chem. Rev., 2005, vol. 105, no. 2, p. 529–542.
Srivastava, B. K., Soni, R., Pateletal, J. Z. Oxazolidinone antibacterials and our experience. Anti-Infect. Agents Med. Chem., 2008, vol. 7, no. 4, p. 258–280.
Ghosh, A. K., Bilcer, G., Schiltz, G. Syntheses of FDA approved HIV protease inhibitors. synthesis, 2001, no. 15, p. 2203–2229.
Zarovnaya, I. S., Tokar, A. V., Palchikov, V. A. Optimized method for obtaining isomeric 3-hydroxy-4-aminothiolan 1,1-dioxides. X Vseukrayinska konferentsiya molodih vchenih ta studentiv z aktualnih pitan himiyi, Tezi dopovidey, Dnipropetrovsk, 2012, p.14. [in Russian]
Bratulescu, G. An Excellent Procedure for the Synthesis of Oxazolidin-2-ones. Synthesis., 2007, no. 20, p. 3111–3112.
Tanis, S. P., Evans, B. R., Niemanetal, J. A. Solvent and in situ catalyst preparation impacts upon Noyori reductions of aryl-chloromethyl ketones: application to syntheses of chiral 2-amino-1-aryl-ethanols. Tetrahedron: Asymm., 2006, vol. 17, no. 14, p. 2154–2182.
Benedetti, F., Norbedo, S. Facile inversion of configuration of N-Boc-β-aminoalcohols via SN2 cyclization to oxazolidinones. Tetrahedron Lett., 2000, vol. 41, no. 51, p. 10071–10074.
Madeskler, M., Zajcev, V. P., Zajceva, Yu. V., Sharipova, S. H. Synthesis of isomeric 2-oxazolidinones from (1R,2R)-and (1S,2S)-2-amino-1-(4-nitrophenyl)-1,3-propanediols. Chem. Heterocycl. Comp., 2007, no. 10, p. 1325–1332.
Basel, Y., Hassner, A. Di-tert-butyl dicarbonate and 4-(dimethylamino)pyridine revisited. Their reactions with amines and alcohols. J. Org. Chem., 2000, vol. 65, no. 20, p. 6368–6380.
Génisson, Y., Lamandé, L., Salma, Y., Andrieu-Abadie, N., André, C., Baltas, M. Enantioselective access to a versatile 4-oxazolidinonecarbaldehyde and application to the synthesis of a cytotoxic jaspine B truncated analogue. Tetrahedron: Asymm., 2007, vol. 18, no. 7, p. 857–864.
Anaya de Parrodi, C., Juaristi, E., Quintero, L., Clara-Sosa, A. Preparation of enantiomerically pure cis- and trans-N-(propionyl)hexahydrobenzoxazolidin-2-ones. Tetrahedron: Asymm., 1997, vol. 8, no. 7, p. 1075–1082.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Oles Honchar Dnipropetrovsk National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).