New STO(II)-3Gmag family basis sets for the calculations of the molecules magnetic properties
DOI:
https://doi.org/10.15421/081502Keywords:
basis set, atomic orbitals, nuclear magnetic shielding tensors, magnetic susceptibility, DFTAbstract
An efficient approach for construction of physically justified STO(II)-3Gmag family basis sets for calculation of molecules magnetic properties has been proposed. The procedure of construction based upon the taken into account the second order of perturbation theory in the magnetic field case. Analytical form of correction functions has been obtained using the closed representation of the Green functions by the solution of nonhomogeneous Schrödinger equation for the model problem of "one-electron atom in the external uniform magnetic field". Their performance has been evaluated for the DFT level calculations carried out with a number of functionals. The test calculations of magnetic susceptibility and 1H nuclear magnetic shielding tensors demonstrated a good agreement of the calculated values with the experimental data.References
Dorfman, Ya. G. Diamagnetism and the chemical bond [in Russian]. Fizmatgiz –1961.
Selwood, P. W. Magnetochemistry wiley–interscience, 1956.
Ditchfield, R. Self–consistent perturbation theory of diamagnetism: I. A gauge–invariant LCAO method for NMR chemical shifts. Mol. Phys., 1974, vol. 27, p. 789.
Ditchfield, R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J. Chem. Phys., 1972, vol. 56, p. 5688.
Keith, T.A., Bader, R.F.W. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett, 1993, vol. 210, p. 223.
Lazzeretti, P., Zanasi, R. Quantum–mechanical sum rules and gauge invariance: A study of the HF molecule. Phys. Rev, 1985, vol. 32, p. 2607.
Zanasi, R., Lazzeretti, P. Theory of magnetic susceptibility in terms of atomic quantities. J. Chem. Phys, 1986, vol. 85, p. 5924.
Lazzeretti, P., Zanasi, R. Electromagnetic nuclear shielding tensors and their relation to other second‐order properties. A study of the methane molecule. J. Chem. Phys., 1987, vol. 87, p. 472.
Malkin, V.G., Malkina, O.L., Eriksson, L.A., Salahub, D.R., Seminario, J.M., Politzer, P. (Eds.) The calculation of NMR and ESR spectroscopy parameters using density functional theory. Elsevier Science, 1995, vol. 2, p. 273.
Hedegård, E. D., Jensen, F., Kongsted, J. Basis set recommendations for DFT calculations of gas–phase optical rotation at different wavelengths. J. Chem. Theory Comput., 2012, vol. 8, no. 11, pp. 4425–4433.
Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys., 1989, vol. 90, pp. 1007–1023.
Jensen, F. Polarization consistent basis sets: Principles. J. Chem. Phys., 2001, vol. 115, no. 20, pp. 9113–9125.
Jensen, F. The basis set convergence of the Hartree–Fock energy for H2. J. Chem. Phys., 1999, vol. 110, p. 6601.
Voronkov, E., Rossikhin, V., Okovytyy, S., Shatckih, A., Bolshakov, V., Leszczynski, J. Novel Physically Adapted STO##–3G Basis sets. efficiency for prediction of second–order electric and magnetic properties of aromatic hydrocarbons. Int. J. Quant. Chem., 2012, vol. 112, pp. 2444–2449.
Kupka, T., Stachów, M., Chełmecka, E., Pasterny, K., Stobińska, M., Stobiński, L., Kaminský, J. Efficient modeling of NMR parameters in carbon nanosystems. J. Chem. Theory Comput., 2013, vol. 9, pp. 4275−4286.
Radula–Janik, K., Kupka, T., Ejsmont, K., Daszkiewicz, Z., Sauer, S. P. A. Halogen effect on structure and 13C NMR chemical shift of 3,6–disubstituted–N–alkyl carbazoles. J. Magn. Reson. Chem., 2013, vol. 51, pp. 630–635.
Wałęsa, R., Ptak, T., Siodłak, D., Kupka, T., Broda, M. A. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin. J. Magn. Reson. Chem., 2014.
Jankowska, M., Kupka, T., Stobi´nski, L., Kaminsk´y, J. DFT studies on armchair (5, 5) SWCNT functionalization. Modificationof selected structural and spectroscopic parameters upon two–atommolecule attachment. J. Mol. Graph. Mod., 2015, vol. 55, pp. 105–114.
Rossikhin, V., Voronkov, E., Okovytyy, S., Sergeieva, T., Kapusta, K., Leszczynski, J. Accurate calculations of dynamic first hyperpolarizability: construction of physically justified slater–type basis sets. Int. J. Quant. Chem., 2014, vol. 114, pp. 689–695.
Rossikhin, V., Okovytyy, S., Kasyan, L. An investigation of the 17O NMR chemical shifts in oxiranes using magnetically corrected basis sets. J. Phys. Chem., 2002, vol. 106, no. 6, pp. 4176–4180.
Bolshakov, V., Rossikhin, V., Voronkov, E. The performance of the new 6–31G## basis set: molecular structures and vibrational frequencies of transition metal carbonyls. J. Comp. Chem, 2007, vol. 28, no. 4, pp. 778–782.
Laurenzi, B. J., Flamberg, A. Electronic computation of first–order wave functions using Green’s functions. Int. J. Quant. Chem., 1977, vol. 11, no. 5, pp. 869–880.
Hehre, W. J., Stewart, R. F., Pople, J. A. self‐consistent molecular‐orbital methods. i. use of gaussian expansions of Slater‐type atomic orbitals. J. Chem. Phys., 1969, vol. 51, p. 2657.
Hehre, W. J., Ditchfield, R., Stewart, R. F., Pople, J. A. self‐consistent molecular orbital methods. iv. use of Gaussian expansions of Slater‐type orbitals. Extension to second‐row molecules. J. Chem. Phys., 1970, vol. 52, p.2769.
Collins, J. B., Schleyer, P. R. Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets. J. Chem. Phys., 1976, vol. 64, p. 5142.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
Haynes, W. M. CRC handbook of Chemistry and Physics, 91st Edition (Internet Version 2011), CRC Press.
Chesnut, D. B. On the calculation of hydrogen NMR chemical shielding. Chem. Phys., 1997, vol. 214, pp. 73–79.
Schneider, W. G., Bernstein, H. J., Pople, H. J. Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules. J. Chem. Phys., 1958, vol. 28, p. 601.
Jackowski, K., Wilczek, M., Pecul, M., Sadlej, J. Nuclear magnetic shielding and spin–spin coupling of 1,2–13C–enriched acetylene in gaseous mixtures with xenon and carbon dioxide. J. Phys. Chem., 2000, vol. 104, p. 5955.
Gauss, J., Stanton, J.F. Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants. J. Chem. Phys., 1996, vol. 104, p. 2574.
Raynes, W. T. Specialist periodical report. Nucl. Magn. Reson. 1978, vol. 7, p. 1.
Höller, R., Lischka, H. Coupled–Hartree–Fock calculations of susceptibilities and magnetic shielding constants. I. The first now hydrides LiH, BeH2, BH3, CH4, NH3, H2O, and HF, and the hydrocarbons C2H2, C2H4 and C2H6. Mol. Phys., 1980, vol. 41, p. 1017
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Oles Honchar Dnipropetrovsk National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).