Radical decomposition of 2,4-dinitrotoluene (DNT) at conditions of advanced oxidation. Computational study

Liudmyla K. Sviatenko, Leonid Gorb, Sergiy I. Okovytyy, Jerzy Leszczynski


At the present time one of the main remediation technologies for such environmental pollutant as 2,4-dinitrotoluene (DNT) is advanced oxidation processes (AOPs). Since hydroxyl radical is the most common active species for AOPs, in particular for Fenton oxidation, the study modeled mechanism of interaction between DNT and hydroxyl radical at SMD(Pauling)/M06-2X/6-31+G(d,p) level. Computed results allow to suggest the most energetically favourable pathway for the process. DNT decomposition consists of sequential hydrogen abstractions and hydroxyl attachments passing through 2,4-dinitrobenzyl alcohol, 2,4-dinitrobenzaldehyde, and 2,4-dinitrobenzoic acid. Further replacement of nitro- and carboxyl groups by hydroxyl leads to 2,4-dihydroxybenzoic acid and 2,4-dinitrophenol, respectively. Reaction intermediates and products are experimentally confirmed. Mostly of reaction steps have low energy barriers, some steps are diffusion controlled. The whole process is highly exothermic.


2,4-dinitrotoluene; hydroxyl radical; Fenton oxidation; DFT; reaction mechanism

Full Text:



Oh, S.-Y., Seo, Y.-D., & Ryu, K.-S. (2016). Reductive removal of 2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent iron-included biochar. Bioresource Technol., 216, 1014–1021. doi:10.1016/j.biortech.2016.06.061 CrossRef

Jiang, S., Zhu, J., Ding, Y., Bai, S., Guan, Y., & Wang, J. (2016). Degradation Effect and Mechanism of Dinitrotoluene Wastewater by Magnetic Nano-Fe3O4/H2O2 Fenton-like. Ozone: Sci. Engin., 38(3), 225–232. doi:10.1080/01919512.2015.1115716 CrossRef

doi: Ho, P. C. (1986). Photooxidation of 2,4-dinitrotoluene in aqueous solution in the presence of hydrogen peroxide. Environ. Sci. Technol., 20(3), 260–267. doi:10.1021/es00145a007 CrossRef

Larson, R. A., Jafvert, C. T., Bosca, F., Marley, K. A., & Miller, P. L. (2000). Effects of surfactants on reduction and photolysis (>290 nm) of nitroaromatic compounds. Environ. Sci. & Technol., 34(3), 505–508. doi:10.1021/es990891e CrossRef

doi: He, Y., Zhao, B., Hughes, J. B., & Han, S. S. (2008). Fenton oxidation of 2,4- and 2,6-dinitrotoluene and acetone inhibition. Front. Environ. Sci. Engin. China, 2(3), 326–332. doi:10.1007/s11783-008-0038-4 CrossRef

Mohanty, N. R., & Wei, I. W. (1993). Oxidation of 2,4-Dinitrotoluene Using Fenton's Reagent: Reaction Mechanisms and Their Practical Applications. Hazard. Waste Hazard. Mater., 10(2), 171–183. doi:10.1089/hwm.1993.10.171 CrossRef

Olson, E. J., Isley III, W. C., Brennan, J. E., Cramer, C. J., & Buhlmann, P. (2015). Electrochemical Reduction of 2,4-Dinitrotoluene in Aprotic and pH-Buffered Media. J. Phys. Chem. C, 119 (23), 13088–13097. doi:10.1021/acs.jpcc.5b02840 CrossRef

Jho, E. H., Jung, J.-W., & Nam, K. (2013). Different fate of Pb and Cu at varied peroxide concentrations during the modified Fenton reaction in soil and its effect on the degradation of 2,4-dinitrotoluene. J. Chem. Technol. Biotechnol., 88(8), 1481–1487. doi:10.1002/jctb.3991 CrossRef

Sviatenko, L., Kinney, C., Gorb, L., Hill, F. C., Bednar, A. J., Okovytyy, S., & Leszczynski, J. (2014). Comprehensive Investigations of Kinetics of Alkaline Hydrolysis of TNT (2,4,6-Trinitrotoluene), DNT (2,4-Dinitrotoluene), and DNAN (2,4-Dinitroanisole). Environ. Sci. Technol., 48 (17), 10465–10474. doi:10.1021/es5026678 CrossRef

Oh, S.-Y., Yoon, H.-S., Jeong, T.-Y., & Kim, S. D. (2016). Evaluation of remediation processes for explosive-contaminated soils: kinetics and Microtox® bioassay. J. Chem. Technol. Biotechnol., 91, 928–937. doi:10.1002/jctb.4658 CrossRef

Mahbub, P., & Nesterenko, P. N. (2016). Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives. RSC Adv., 6, 77603–77621. doi:10.1039/C6RA12565D CrossRef

Chen, W.-S., Jhou, Y.-C., & Huang, C.-P. (2014). Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation. Chem. Eng. J., 252, 166–172. doi:10.1016/j.cej.2014.05.033 CrossRef

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 (Revision A.02) [Computer software]. Gaussian Inc., Wallingford CT.

Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor. Chem. Account, 120, 215–241. doi:10.1007/s00214-007-0310-x CrossRef

DOI: http://dx.doi.org/10.15421/081608


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

eISSN: 2313-4984 | pISSN: 2306-871X
The journal publishes research papers on terms: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipropetrovsk National University