Interaction of the ceria with ytterbia at temperature 1100 °C

Authors

  • Oksana A. Кornienko Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3 Academician Krzhizhanovsky St., Kyiv, 49010, Ukraine

DOI:

https://doi.org/10.15421/081613

Keywords:

phase equilibria, phase diagram, solid solutions, lattice parameters of the unit cells, functional materials

Abstract

Phase equilibria in the binary CeO2–Yb2O3 system at 1100 °C were studied by X-ray diffraction in the overall concentration range. The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100 °C. The solid solutions based on various polymorphous forms of constituent phases. The boundaries of mutual solubility and concentration dependences the lattice parameters for all phases have been determined. The study of solid state reaction of СeO2 (fluorite-type, F) and Yb2O3 (cubic modification of rare-earth oxides, type C) at 1100 °С showed that two types of solid solutions based on cubic modifications of F–CeO2 and С–Yb2O3 in the CeO2–Yb2O3 system. These solid solution regimes were separated from end to end with the two-phase field: (F+С). The solubility of Yb2O3 in F- modification of CeO2 is about 15 mol % at 1100 °C. The lattice parameter of the unit cell decreased from а = 0.5409 nm in pure CeO2 to а = 0.5385  nm for the solid solution of boundary composition. The solubility of CeO2 in cubic C- ytterbium oxide attains ~10 mol %. The lattice parameters of the unit cell C phase varies from а = 1.0425 nm in pure Yb2O3 to а = 1.0437 nm for in two-phase sample (C+F), containing 10 mol %  CeO2.

Author Biography

Oksana A. Кornienko, Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3 Academician Krzhizhanovsky St., Kyiv, 49010

с.н.с.

References

Maslov, V. I. (2006). [High-temperature fuel cell – cogeneration energy sources of the future]. Turbines & Disels, (1), 4–6 (in Russian). Retrieved from www.turbine-diesel.ru

Chavan, S. V., & Tyagi, A. K. (2005). Phase relations and lattice thermal expansion studies in the Ce0.50RE0.50O1.75 (RE = rare-earths). Mater. Sci. Eng.: А, 404(1–2), 57–63. doi:10.1016/j.msea.2005.05.036 CrossRef

Hsieh, W.-S., Pang, L., & Wang, S.-F. (2013) Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating. Int. J. of Hydrogen Energy, (253), 2859–2867. doi:10.1016/j.ijhydene.2012.12.056 CrossRef

Dasari, H. P., Park, S.-Y., Kim, J., Lee, H.-B., Kim, J.-K., Lee, H.-W., & Yoon, K. J. (2013). Electrochemical characterization of Ni–yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. J. Power Sources, (240), 721–728. doi:10.1016/j.jpowsour.2013.05.033 CrossRef

Baquero, T., Escobar, J., Frade, J., & Hotza, D. (2013). Aqueous tape casting of micro and nano YSZ for SOFC electrolytes Ceram. Int., 39(7), 8279–8285. doi:10.1016/j.ceramint.2013.03.097 CrossRef

Xia, J. F., Liu, G. M., Peng, N. S., Feng, T., Xu, H. F., Huang, D. X., & Jiang, D. Y. (2013). Effect of Coupled Conditions of Thermal Cycle and Dump Environment on Microstructure of 5 mol% Yttria Stabilized Zirconia. Key Eng. Mater., 544, 330–333. doi:10.4028/www.scientific.net/KEM.544.330 CrossRef

Liu, Z., Ding, D., Liu, M., Ding, X., Chen, D., Li, X., Xia, C., & Liu, M. (2013). High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. J. Power Sources, 241, 454–459. doi:10.1016/j.jpowsour.2013.01.130 CrossRef

Sato, K., Yugami, H., & Hashida T. (2004). Effect of rare-earth oxides on fracture properties of ceria ceramics. J. Mater. Sci., 39(18), 5765–5770. doi:10.1023/B:JMSC.0000040087.37727.cd CrossRef

Dudek, M. (2008). Ceramic oxide electrolytes based on CeO2–Preparation, properties and possibility of application to electrochemical devices. J. Eur. Ceram. Soc., 28(5), 965–971. doi:10.1016/j.jeurceramsoc.2007.09.004 CrossRef

Martinelli, A. E., Macedo, D. A., Cesário, M. R., Cela, B., Nicodemo, J. P., Paskocimas, C. A., Melo, D. M., & Nascimento R. M. (2013). Synthesis of Functional Ceramic Materials for Application in 2 kW Stationary SOFC Stacks. Mater. Sci. Forum, 730–732, 147–152. doi:10.4028/www.scientific.net/MSF.730-732.147 CrossRef

Malecka, M. A., & Kepinski, L. (2010). Structural characterization of nano-sized Ce0.5Ln0.5O1.75 (Ln = Yb, Lu) mixed oxides. J. Microsc., 237(3), 391–394. doi:10.1111/j.1365-2818.2009.03268.x CrossRef

Małecka, M. A., Delgado, J. J., Kępiński, L., Calvino, J. J., Bernal, S., Blanco, G., & Chen, X. Structure transformations and reducibility of nanocrystalline Ce1−xYbxO2−(x/2) mixed oxides. Catal. Today, 187(1), 56–64. doi:10.1016/j.cattod.2012.01.004 CrossRef

Małecka, M. A., Burkhardt, U., Kaczorowski, D., Schmidt, M. P., Goran, D., & Kepin´ski, L. (2009). Structure and phase stability of nanocrystalline Ce1−xLnxO2−x/2−δ (Ln = Yb, Lu) in oxidizing and reducing atmosphere. J. Nanopart. Res., 11(8), 2113–2124. doi:10.1007/s11051-008-9577-7 CrossRef

Li, Z.-P., Mori, T., Auchterlonie, G. J., Zou, J., & Drennan, J. (2012). Incubational domain characterization in lightly doped ceria. J. Solid State Chem., 192, 28–33. doi:10.1016/j.jssc.2012.03.051 CrossRef

Andrievskaya, E. R., Kornienko O. A., Sameljuk, A. V., & Sayir, A. (2011). Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °С. J. Eur. Ceram. Soc., 31(7), 1277–1283. doi:10.1016/j.jeurceramsoc.2010.05.024 CrossRef

Andrievskaya, E. R., Kornienko, O. A., Gorodov, B. S., Cherkasova, K. A., & Zgurovetz, V. O. (2008). [Phase relations in the CeO2–Sm2O3 system at 1500 °C]. Modern problems of materials science, (17), 25–29 (in Russian). Retrieved from dspace.nbuv.gov.ua

Kornienko, O. A. (2009). [Interaction and phase properties in the CeO2–Gd2O3 system at 1500 °С]. Visn. NTU «KhPI» – Bull. NTU «KhPI», (45), 86–90. (in Russian).

Kornienko, O. A. (2010). [Interaction and phase properties in the CeO2–Gd2O3 system at 1100 °С]. Visn. NTU «KhPI» – Bull. NTU «KhPI», (66), 14–18 (in Russian).

Andrievskaya, E. R., Gusarov, V. V., Kornienko, О. А., & Sameljuk, A. V. (2012). [Interaction cerium oxide with erbium oxides at temperature 1500 °C]. Sb. nauchn. trud. OAO UkrNYY ohneupor. ym. A. S. Berezhnoho – Digest Sci. Research. Ukr. Research Institute of refractories name after A. C. Berezhnovo, (112), 133–140 (in Russian). Retrieved from nbuv.gov.ua

Mandal, B. P., Grover, V., Roy, M., & Tayagi, A. K. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3-substituted CeO2. J. Amer. Soc., 90(9), 2961–2965. doi:10.1111/j.1551-2916.2007.01826.x CrossRef

Parvulescu, V. I., Vasiliu, F., Segal, E. (1995). Termal behavior of CO2 laser-irradiated CeO2 doped with Yb2O3. J. Therm. Anal., 45, 1313–1322. doi:10.1007/BF02547425 CrossRef

Pikalova, E. Y., Murashkina, A. A., Maragou, V. I., Demin, A. K., Strekalovsky, V. N., & Tsiakaras P. E. (2011). CeO2 based materials doped with lanthanides for applications in intermedete temperature electrochemical devices. Int. J. Hydrogen Energy, (36), 6175–6183. doi:10.1016/j.ijhydene.2011.01.132 CrossRef

Wang, Ya., Mori, T., Li, J.-G., & Drennan, J. (2006). Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3-doped CeO2 ceramics. J. Eur. Ceram. Soc., 25(6), 949–956. doi:10.1016/j.jeurceramsoc.2004.01.020 CrossRef

Anjana, P. S., Joseph, T., & Sebastian, M. T. (2010). Microwave dielectric properties of (1-x) CeO2-xRE2O3 (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) (0 ≤ x ≤1) ceramics. J. Alloys Comp., 490(1–2), 208–213. doi:10.1016/j.jallcom.2009.09.057 CrossRef

Baral, A. K., & Sankaranarayanan, V. (2010). Ionic transport properties in nanocrystalline Ce0.8A0.2O2-δ (with A = Eu, Gd, Dy, and Ho) materials. Nanoscale Res. Lett., 5(3), 637–643. doi:10.1007/s11671-010-9527-z CrossRef

Choi, K., Reavis, R. E., Osterberg, D. D., Jaques, B. J., Butt, D. P., Mariani, R. D., Burkes, D. E., & Munir, Z. A. (2012). Effect of Dysprosia Additive on the Consolidation of CeO2 by Spark Plasma Sintering. J. Am. Ceram. Soc., 95(5), 1524–1529. doi:10.1111/j.1551-2916.2011.05054.x CrossRef

Brauer, G. (1968). Structural and solid state chemistry of pure earth oxides and hydroxides. Progress in the science and technol. of rare earths, 3, 434–457.

Haire, R. G., & Eyring, L. (1994). Comparisons of binary oxides. In: Gschneider K. A., Eyring L., Choppin G. R., Lander G. R. (Eds). Handbook on the physics and chemistry of rare earths. Lanthanides/actinides:chemistry. Amsterdam: Elsevier Science.

Published

2016-12-31