Identification of phase structure of plated zinc alloys based on a linear voltammetry in alkaline solutions

Authors

DOI:

https://doi.org/10.15421/081616

Keywords:

electrolytic zinc alloys, phase analysis, linear voltammetry

Abstract

The purpose of research was the development of new and effective technique of electroplatings phase composition analysis by inversion voltammetric methods. As a result the possibility of the phase composition of the plated zinc-based alloys identification using anodic linear voltammetry in alkaline solutions was shown. The phase composition Zn–(0.27–9.4)% Fe alloy electroplated from alkaline zincate solutions was defined based on voltammetry data. As part of the Zn–Fe alloys the phase of hexagonal structure was found which is absent in the equilibrium phase diagram. The ratio of hexagonal crystal lattice axes (c/a) and the electron concentration (e/a) for this phase are significantly different from the corresponding values for the primary solid solution η. From the analysis of c/a and e/a values of investigated Zn–Fe alloy the defined phase was identified as a solid solution phase type ε. It also was shown that anodic linear voltammetry accomplished in alkaline solutions is more sensitive to the identification of the phase composition of zinc alloys than the traditional X-ray method and stripping voltammetry.

Author Biographies

Lina V. Petrenko, Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipropetrovsk, 49010

associate professor of chemistry and chemical technology of macromolecular compounds, candidate of chemical sciences

Viktor I. Korobov, Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipropetrovsk, 49010

head of the physical and inorganic chemistry, candidate of chemical sciences, docent

References

Conrad, H. A., McGuire, M. R., Zhou, T., Coskun, M. I., & Golden, T. D. (2015). Improved corrosion resistant properties of electrochemically deposited zinc-nickel alloys utilizing a borate electrolytic alkaline solution. Surf. Coat. Technol., 272, 50–57. doi:10.1016/j.surfcoat.2015.04.025 CrossRef

Feng, Z., Li, Q., Zhang, J., Yang, P., Song, H., & An, M. (2015). Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath. Surf. Coat. Technol., 270, 47–56. doi:10.1016/j.surfcoat.2015.03.020 CrossRef

Nakano, H., Arakawa, S., Oue, S., & Kobayashi, S. (2015). Electrodeposition Behavior of Zn–Fe Alloy from Zincate Solution Containing Triethanolamine. Mater. Trans., 56(10), 1664–1669. doi:10.2320/jinstmet.J2014054 CrossRef

Fashu, S., Gu, C. D., Zhang, J. L., Huang, M. L., Wang, X. L., & Tu, J. P. (2015). Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans. Nonferrous Met. Soc. China, 25, 2054−2064. doi:10.1016/S1003-6326(15)63815-8 CrossRef

Tarng, M. L., & Wehner, G. K. (1971). Auger-spectroscopy for structure analysis of coatings. J. Appl. Phys., 42, 2449–2452.

Swathirajan, S. (1986). Potentiodynamic and Galvanostatic Stripping Methods for Characterization of Alloy Electrodeposition Process and Product. J. Electrochem. Soc., 133(4), 671–680. doi:10.1149/1.2108652 CrossRef

Assaf, F. H., Abou-Krisha, M. M., Alduaij, O. K., El-Seidy, A. M. A., & Eissa, A. A. (2015). The Effect Manganese Concentration on the Corrosion Resistance and Physical Properties of Zn-Ni-Mn Alloy Films Produced by Electrodeposition. Int. J. Electrochem. Sci., 10, 6273–6287. Retrieved from electrochemsci.org

Vydra, F., Stulik, K., & Julakova, E. (1978). Electrochemical stripping analysis. New York, Toronto, USA: Halsed Press.

Braynina, Kh. Z., Neyman, Ye. Ya., & Slepushkin, V. V. (1988). [Inversion Electroanalytical Methods]. Мoskow, USSR: Khimiya (in Russian).

Marczenko, Z. (1986). Separation and Spectrophotometric Determination of Elements. Chichester, UK: Ellis Horwood Limited.

Petrenko, L. V. (2016). [The kinetics of anodic dissolution and passivation of zinc alloyed coatings] (Unpublished doctoral dissertation). Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine (in Ukrainian). Retrieved from udhtu.com.ua

Pearson, W. (1977). [Crystal Chemistry and Physics of Metals and Alloys]. Moscow, USSR: Mir (in Russian).

Barrett, C. S., & Massalski, T. B. (1980). Structure of metals. Oxford, UK: Pergamon Press.

Kondo, K., Hinotani, S., & Ohmori, Y. (1988). Crystal structure and morphology of electrodeposited zinc-iron binary alloys. J. Appl. Electrochem., 18(1), 154–161. doi:10.1007/BF01016220 CrossRef

Fujieda, T., Nsganawa, A., Toyota, M., Higuchi, S., & Takahashi, S. (1992). Structure of Electrodeposited Zn-Fe Alloy in the Zinc Rich Region. ISIJ International., 32(9), 1044–1046. Retrieved from jstage

Kryshtop, Yu. G. (2011). [Kinetic and thermodynamic peculiarities of the initial stages of zinc electrocrystallization] (Unpublished doctoral dissertation). Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine (in Russian).

Published

2016-12-31