Kinetic parameters estimation for conjugated electrochemical systems

Irina A. Medvedeva, Viktor I. Korobov


The new mathematical method useful for quick treatment of polarization curves obtained for corrosion process has been proposed. This method is based on function dependence between corrosion current density, Tafel constants, diffusion current density, ohmic resistance and polynomial coefficients that fit the polarization curve within ±30 mV overpotential range. The proposed method is robust and fast. Application of this method for partial reaction of corrosion process with activation, diffusion, activation-diffusion control has been considered. The method has been tested on real objects: Ni/0.5 mol/L H2SO4, Zn/0.5 mol/L NaOH, Zn/3 % NaCl, Zn/3 % Na2SO4, Armco iron/0.5 mol/L K2SO4. Obtained Tafel constants and corrosion current density values correlate with published data.


kinetic parameter; Tafel slopes; corrosion current density; approximation; degree polinom


Gu, C. D., Yun, W., & Tu, J. P. (2016). Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride - Urea based deep eutectic solvent. Corros. Sci., 106(5), 108-116. doi:10.1016/j.corsci.2016.01.030 CrossRef

Xu, S., Zhu, Y., Xiong, D., Zhang, W., Wang, L., Yung, P., & Chu, P. (2015). Electrochemical investigation of the corrosion properties of three-dimensional nickel electrodes on silicon microchannel plates. Corros. Sci., 100, 113-120. doi:10.1016/j.corsci.2015.07.015 CrossRef

Sriraman, K. R., Brahimi, S., Szpunar, J. A., Osborne, J. H., & Yue, S. (2013). Characterization of corrosion resistance of electrodeposited ZnNi Zn and Cd coatings. Electrochem. Acta, 105, 314-323. doi:10.1016/j.electacta.2013.05.010 CrossRef

Yavorska, N. M. (2015). [Effect of nanopowder boron nitride on corrosive resistance of the compositional electrochemical coveranges on the basis of nickel]. Visn. Khmelnyts. Nats. Univ.: Tekhn. nauky – Herald Khmelnyts. Nat. Univ.: Techn. Sci., 2, 21-24 (in Ukrainian). Retrieved from

Barbalat, M. , Lanarde, L., Caron D., Meyer, M., Vittonato, J., Castillon, F., Fontaine, S., & Refait, Ph. (2012). Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci., 55, 246–253. doi:10.1016/j.corsci.2011.10.031 CrossRef

Nyrkova, L. І., Polyakov, S. H., Osadchuk, S. О., Mel’nychuk, S. L., & Hapula, N. О. (2012). Determination of the rate of atmospheric corrosion of metal structures by the method of polarization resistance. Mater. Sci., 47(5), 683-688. doi:10.1007/s11003-012-9444-7 CrossRef

Kumar, M., Kumaran, S., & Kumaraswamidhas, L. A. (2015). An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AiN and ZrB2 composites. J. Alloys Comp., 652, 244-249. doi:10.1016/j.jallcom.2015.08.205 CrossRef

Zhewen, M., Zhou, W., Chaoling, W., Zhu, D., Huang, L., Wang, Q., Zhengyao, T., & Chen. Y. (2016). Effects of size of nickel powder additive on the low-temperature electrochemical performances and kinetics parameters of AB5-type hydrogen storage alloys for negative electrode in Ni/MH battery. J. Alloys Comp., 660, 289-296. doi:10.1016/j.jallcom.2015.11.078 CrossRef

Bochkariova, T. A., & Borysenco, Yu. V. (2015). [Stady of corrosion properties of steel 12Х18Н10Т]. Visn. Kyiv. Nats. Univ. tekhnol. ta dizajnu: Tekhn. Nauky – Bull. Kyiv Nat. Univ. Technol. and Design: Techn. Sci., (2 (88)), 152-157 (in Ukrainian). Retrieved from:


Petrina, D. Yu., Petrina, Yu. D., Shulyar, B. R., Kozak, O. L., & Gogol, V. M. (2012). [Evaluation of operational degradation steel main oil pipelines electrochemical methods research]. – Metody ta Prylady Kontroliu Yakosti – Quality Control Tools and Techniques, 29, 138-145 (in Ukrainian). Retrieved from

Korobov, V. I., Medvedeva, I. A., & Seredjuk, V. A. (2001). [Registration of ohmic losses in an electrolyte by the method of processing of polarizate instrumentation data]. Ukr. Сhem. J., 67(78), 111–116 (in Ukrainian).

Medvedeva, І. А. (2011). [Corrosion rate determination under conditions of mixed kinetics]. Voprosy khimii i khimicheskoi technologii - Issues of Chemistry and Chemical Technology, 47(4 b), 63–66 (in Ukrainian).

Nagy, Z. (1986). Effect of mass transport on the determination of corrosion rates from polarization measurements. J. Electrochem. Soc., 133(10), 2013–2017. doi:10.1149/1.2108331 CrossRef

Walter, G. W. (1978). The effect of IR-drop on corrosion rates calculated from low polarization data. Corros. Sci., 18(10), 927–945. doi:10.1016/0010-938X(78)90013-6 CrossRef

Rocchini, G. (1996). A teoretical stady of influence of the ohmic drop on polarization curves. Corros. Sci., 38(4), 655–668. doi:10.1016/0010-938X(95)00156-E CrossRef

Korobov, V. I., Medvedeva, I. A., & Prokuda, L. M. (2000). [Estimationg with a known mechanism of corrosion: an analysis of Tafel polarization curve plot]. Bull. Dnipropetrovsk Univ. Ser. Chem., (4), 19–21 (in Ukrainian).

Chang, Yu-Chi (1984). A model for the Anodic dissolution of zinc in alkaline electrolyte. J. Electrochem. Soc., 131(7), 1465–1468. doi:10.1149/1.2115875 CrossRef

Reingeverts, M. D, Khait, Y. G., & Sergeeva, N. A. (1993). Determination of kinetic-parameters of general metal corrosion from polarization measurements. Prot. Met., 29(5), 572-578.

Zembura, Z. & Burzynska, L. (1977). The Corrosion of zinc in de-aerated 0.1 M NaCl in the pH range from 1.6 to 13.3. Corros. Sci., 17(11), 871–876. doi:10.1016/0010-938X(77)90093-2 CrossRef

Fedrizzi, L., Ciaghi, L., Bonora, P. L., Fratesi, R., & Roventi, G. (1992). Corrosion behavior of electrogalvanized steel in sodium chloride and ammonium sulphate solutions; a study by E.I.S. J. Appl. Electrochem., 22(1), 247–254. doi:10.1007/BF01030185 CrossRef

Stern, M., & Geary, A. L. (1957). A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc., 104(1), 56–63. doi:10.1149/1.2428496 CrossRef

Rodney, L. Le R. (1977). Evaluation of corrosion rates from nonlinear polarization data. J. Electrochem. Soc., 124(7), 1006–1012. doi:10.1149/1.2133470 CrossRef

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Chemistry and Technologies
eISSN: 2663-2942 | pISSN: 2663-2934
Address of
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University