Kinetic parameters estimation for conjugated electrochemical systems
DOI:
https://doi.org/10.15421/081617Keywords:
kinetic parameter, Tafel slopes, corrosion current density, approximation, degree polinomAbstract
The new mathematical method useful for quick treatment of polarization curves obtained for corrosion process has been proposed. This method is based on function dependence between corrosion current density, Tafel constants, diffusion current density, ohmic resistance and polynomial coefficients that fit the polarization curve within ±30 mV overpotential range. The proposed method is robust and fast. Application of this method for partial reaction of corrosion process with activation, diffusion, activation-diffusion control has been considered. The method has been tested on real objects: Ni/0.5 mol/L H2SO4, Zn/0.5 mol/L NaOH, Zn/3 % NaCl, Zn/3 % Na2SO4, Armco iron/0.5 mol/L K2SO4. Obtained Tafel constants and corrosion current density values correlate with published data.References
Gu, C. D., Yun, W., & Tu, J. P. (2016). Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride - Urea based deep eutectic solvent. Corros. Sci., 106(5), 108-116. doi:10.1016/j.corsci.2016.01.030 CrossRef
Xu, S., Zhu, Y., Xiong, D., Zhang, W., Wang, L., Yung, P., & Chu, P. (2015). Electrochemical investigation of the corrosion properties of three-dimensional nickel electrodes on silicon microchannel plates. Corros. Sci., 100, 113-120. doi:10.1016/j.corsci.2015.07.015 CrossRef
Sriraman, K. R., Brahimi, S., Szpunar, J. A., Osborne, J. H., & Yue, S. (2013). Characterization of corrosion resistance of electrodeposited ZnNi Zn and Cd coatings. Electrochem. Acta, 105, 314-323. doi:10.1016/j.electacta.2013.05.010 CrossRef
Yavorska, N. M. (2015). [Effect of nanopowder boron nitride on corrosive resistance of the compositional electrochemical coveranges on the basis of nickel]. Visn. Khmelnyts. Nats. Univ.: Tekhn. nauky – Herald Khmelnyts. Nat. Univ.: Techn. Sci., 2, 21-24 (in Ukrainian). Retrieved from nbuv.gov.ua
Barbalat, M. , Lanarde, L., Caron D., Meyer, M., Vittonato, J., Castillon, F., Fontaine, S., & Refait, Ph. (2012). Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci., 55, 246–253. doi:10.1016/j.corsci.2011.10.031 CrossRef
Nyrkova, L. І., Polyakov, S. H., Osadchuk, S. О., Mel’nychuk, S. L., & Hapula, N. О. (2012). Determination of the rate of atmospheric corrosion of metal structures by the method of polarization resistance. Mater. Sci., 47(5), 683-688. doi:10.1007/s11003-012-9444-7 CrossRef
Kumar, M., Kumaran, S., & Kumaraswamidhas, L. A. (2015). An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AiN and ZrB2 composites. J. Alloys Comp., 652, 244-249. doi:10.1016/j.jallcom.2015.08.205 CrossRef
Zhewen, M., Zhou, W., Chaoling, W., Zhu, D., Huang, L., Wang, Q., Zhengyao, T., & Chen. Y. (2016). Effects of size of nickel powder additive on the low-temperature electrochemical performances and kinetics parameters of AB5-type hydrogen storage alloys for negative electrode in Ni/MH battery. J. Alloys Comp., 660, 289-296. doi:10.1016/j.jallcom.2015.11.078 CrossRef
Bochkariova, T. A., & Borysenco, Yu. V. (2015). [Stady of corrosion properties of steel 12Х18Н10Т]. Visn. Kyiv. Nats. Univ. tekhnol. ta dizajnu: Tekhn. Nauky – Bull. Kyiv Nat. Univ. Technol. and Design: Techn. Sci., (2 (88)), 152-157 (in Ukrainian). Retrieved from:
>irbis-nbuv.gov.ua
Petrina, D. Yu., Petrina, Yu. D., Shulyar, B. R., Kozak, O. L., & Gogol, V. M. (2012). [Evaluation of operational degradation steel main oil pipelines electrochemical methods research]. – Metody ta Prylady Kontroliu Yakosti – Quality Control Tools and Techniques, 29, 138-145 (in Ukrainian). Retrieved from nbuv.gov.ua
Korobov, V. I., Medvedeva, I. A., & Seredjuk, V. A. (2001). [Registration of ohmic losses in an electrolyte by the method of processing of polarizate instrumentation data]. Ukr. Сhem. J., 67(78), 111–116 (in Ukrainian).
Medvedeva, І. А. (2011). [Corrosion rate determination under conditions of mixed kinetics]. Voprosy khimii i khimicheskoi technologii - Issues of Chemistry and Chemical Technology, 47(4 b), 63–66 (in Ukrainian).
Nagy, Z. (1986). Effect of mass transport on the determination of corrosion rates from polarization measurements. J. Electrochem. Soc., 133(10), 2013–2017. doi:10.1149/1.2108331 CrossRef
Walter, G. W. (1978). The effect of IR-drop on corrosion rates calculated from low polarization data. Corros. Sci., 18(10), 927–945. doi:10.1016/0010-938X(78)90013-6 CrossRef
Rocchini, G. (1996). A teoretical stady of influence of the ohmic drop on polarization curves. Corros. Sci., 38(4), 655–668. doi:10.1016/0010-938X(95)00156-E CrossRef
Korobov, V. I., Medvedeva, I. A., & Prokuda, L. M. (2000). [Estimationg with a known mechanism of corrosion: an analysis of Tafel polarization curve plot]. Bull. Dnipropetrovsk Univ. Ser. Chem., (4), 19–21 (in Ukrainian).
Chang, Yu-Chi (1984). A model for the Anodic dissolution of zinc in alkaline electrolyte. J. Electrochem. Soc., 131(7), 1465–1468. doi:10.1149/1.2115875 CrossRef
Reingeverts, M. D, Khait, Y. G., & Sergeeva, N. A. (1993). Determination of kinetic-parameters of general metal corrosion from polarization measurements. Prot. Met., 29(5), 572-578.
Zembura, Z. & Burzynska, L. (1977). The Corrosion of zinc in de-aerated 0.1 M NaCl in the pH range from 1.6 to 13.3. Corros. Sci., 17(11), 871–876. doi:10.1016/0010-938X(77)90093-2 CrossRef
Fedrizzi, L., Ciaghi, L., Bonora, P. L., Fratesi, R., & Roventi, G. (1992). Corrosion behavior of electrogalvanized steel in sodium chloride and ammonium sulphate solutions; a study by E.I.S. J. Appl. Electrochem., 22(1), 247–254. doi:10.1007/BF01030185 CrossRef
Stern, M., & Geary, A. L. (1957). A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc., 104(1), 56–63. doi:10.1149/1.2428496 CrossRef
Rodney, L. Le R. (1977). Evaluation of corrosion rates from nonlinear polarization data. J. Electrochem. Soc., 124(7), 1006–1012. doi:10.1149/1.2133470 CrossRef
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Oles Honchar Dnipropetrovsk National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).