Structure and redox properties of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) adsorbed on a silica surface. A DFT M05 computational study
DOI:
https://doi.org/10.15421/081701Keywords:
silica, RDX, HMX, adsorption, reduction, oxidationAbstract
Adsorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) on (001) surface of α-quartzwas studiedat the M05/tzvp level using cluster approximation. Hydrogen bonds between nitramines and silica surface were analyzed by atoms in molecules (AIM) method. Electron attachment causes significant change in geometry of adsorbed complexes. Redox properties of adsorbed RDX and HMX were compared with those of gas-phase and hydrated species by calculation of the ionization potential, electron affinity, oxidation and reduction Gibbs free energies, oxidation and reduction potentials. Calculations show that adsorbed RDX and HMX have lower ability to undergo redox transformations than hydrated ones.References
U.S. department of health and human services. Public Health Service Agency for Toxic Substances and Disease Registry (2012). Toxicological profile for RDX, Georgia, 174 p.
Felt, D., Johnson, J. L., Larson, S., Hubbard, B., Henry, K., Nestler, C., Ballard, J. H. (2013). Evaluation of Treatment Technologies for Wastewater from Insensitive Munitions Production. ERDC/EL TR-13-20 Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS.
Lin, K. S., Dehvari, K., Hsien, M. J., Hsu, P. J., Kuo, H. (2013). Degradation of TNT, RDX, and HMX explosive waste-waters using zero-valent iron nanoparticles. Propellants Explos. Pyrotech., 38, 786–90. doi: 10.1002/prep.201200205 CrossRef
Jiao, W., Guo, L., Liu, Y. Z., Liu, W. L., Li, J., Xu, C.C. (2014). Degradation of HMX production wastewater by fenton oxidation. Chinese J. Energ. Mater., 22(1), 94–99. doi: 10.3969/j.issn.1006–9941.2014.01.020 CrossRef
Sharma, P., Mayes, M. A., Tang, G. (2013). Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils. Chemosphere, 92(8), 993–1000. doi: 10.1016/j.chemosphere.2013.03.028 CrossRef
Hatzinger, P. B.; Fuller, M. E., Rungmakol, D., Schuster, R. L., Steffan, R. J. (2004). Enhancing the attenuation of explosives in surface soils at military facilities: sorption-desorption isotherms. Environ. Toxicol. Chem., 23, 306–312. doi: 10.1897/03-186 CrossRef
Ariyarathna, T., Vlahos, P., Tobias, C., Smith, R. (2016). Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies. Environ. Toxicol. Chem., 35(1), 47–55. doi: 10.1002/etc.3149 CrossRef
Katseanes, C. K., Chappell M. A., Hopkins, B. G., Durham, B. D., Price, C. L., Porter, B. E., Miller, L. F. (2016). Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils. J. Environ. Manag., 182, 101–110. doi: 10.1016/j.jenvman.2016.07.043 CrossRef
Sviatenko, L. K., Isayev, O., Gorb, L., Hill, F. C., Leszczynska, D., Leszczynski, J. (2015). Are the reduction and oxidation properties of nitrocompounds dissolved in water different from those produced when adsorbed on a silica surface? An DFT M05-2X computational study. J. Comput. Chem., 36(14), 1029–1035. doi: 10.1002/jcc.23878 CrossRef
Sviatenko, L. K., Gorb, L., Okovytyy, S. I. (2015). Structure and redox properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) adsorbed on a silica surface. M05 computational study. Bull. Dnipropetrovsk Univ. Ser. Chem., 23(2),1–9. doi: 10.15421/081511 CrossRef
Sviatenko, L. K., Gorb, L., Hill, F. C., Leszczynska, D., Leszczynski, J. (2015). ANTA structure and redox properties of 5-amino-3-nitro-1H-1,2,4-triazole (ANTA) adsorbed on a silica surface: A DFT M05 computational study. J. Phys. Chem. A., 119(29), 8139–8145. doi: 10.1021/acs.jpca.5b03393 CrossRef
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. (2009). Gaussian 09 (Revision A.02) [Computer software]. Gaussian Inc., Wallingford CT.
Lu, T., Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 33, 580–592. doi: 10.1002/jcc.22885 CrossRef
Truhlar, D., Cramer, C., Lewis, A., Bumpus, J. (2004). Molecular modeling of environmentally relevant processes: reduction potentials. J. Chem. Ed., 81, 596–604. doi: 10.1021/ed081p596 CrossRef
Molt, Jr. R. W., Watson, Jr. T., Bazante, A. P., Bartlett, R. J. (2013). The great diversity of HMX conformers: probing the potential energy surface using CCSD(T). J. Phys. Chem. A, 117, 3467−3474. doi: 10.1021/jp311073m CrossRef
Al-Saidi, W. A., Asher, S. A., Norman, P. (2012). Resonance Raman spectra of TNT and RDX using vibronic theory, excited-state gradient, and complex polarizability approximations. J. Phys. Chem. A, 116, 7862−7872. doi: 10.1021/jp303920c CrossRef
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Oles Honchar Dnipropetrovsk National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).