Quantum chemical analysis of Со2+ aqua complexes electrochemical reduction

Viktor F. Vargalyuk, Andrey O. Borschevich, Larisa V. Borschevich


Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method) as to [Co(H2O)n]z(H2O)6–n clusters for z = 0, 1, 2 and n=1÷6, it has been demonstrated that electrochemical reduction of [Co(H2O)6]2+ aqua complexes runs stage-wise. At the first stage, an electron injected into the [Co(H2O)6]2+ complex is entirely located in the orbital of the central atom, as z(Co) herewith changes from +1.714 е to +0.777 е. The weakening of Со–ОН2 bonds leads to decomposition of resulting [Co(H2O)6]+ particles into two energetically related forms – [Co(H2O)4]+ and [Co(H2O)3]+. Further reduction of these intermediates runs differently. Electron injection into the [Co(H2O)3]+ intermediate terminatesthe transition of Со2+-ions to Со0 z(Co)= –0.264 е. This process is accompanied by rapid decomposition of [Co(H2O)3]0 product into monohydrate atom of cobalt Со(Н2О). On the contrary, electron injection into the [Co(H2O)4]+ intermediate leads to emergence of a specific structure – [Co+(H2O)(Н2О)3]¹0, whereby the electron is located in the atoms of cobalt only by 28%, and by 72% in cobalt-coordinated water molecules, clearly focusing on one of the. In this molecule, z(H2O) changes from +0.148 е to –0.347 е. There is an assumption that a non-equilibrium [Co+(H2O)(Н2О)3]0¹ form transits to [Co(ОH)(Н2О)3]0 hydroxo-form, which further disproportionates turning into Co(ОH)2 hydroxide. In order to reduce the impact of this unfavorable reaction pathway on the overall reaction rate Со2+ + 2ē = Со0, we suggest raising the temperature to ensure complete dissociation of [Co(H2O)4]+ to [Co(H2O)3]+.


cobalt aqua complexes, electrochemical reduction, quantum chemical modeling


Kozin, L. F. (1989). [Electrodeposition and dissolution of multivalent metals] Kiev, Ukraine: Naukova Dumka (in Russian).

Sahari, A., Mokhtari, S. (2013). Effect of pH at Early Formed Structures in Cobalt Electro-deposition. Asian J. Chem. 25(8), 4137−4140. doi: CrossRef

Krasikov, V. L. (2015). [The role of electrochemical cobalt reduction intermediates in the formation of Oxygen-containing admixtures] Yzvestyja SPbGhTY(TU). Khymyja y khymycheskaja tekhnologhyja. 31, 40−46. (in Russian). Retrieved from researchgate

Lafores, M., Medvediev, А. J., Katuso, К., Chvarceher, V., Маsliy, А. I. (2007). Dependence of a cathode layer structure on pH under cobalt electrodeposition from water sulfate solutions. Russ. J. Electrochem. 43(7), 856–858. doi: CrossRef

Kasikov, А. G., Diakova, L. V. (2015). [New ways of obtaining cobalt and its salts from cobalt(II) chloride solutions]. Trudy Koljskogho nauchnogho centra RAN. 5(31), 136–139. (in Russian)

Patnaik, P., Padhy, S. K., Tripathy, B. C., Bhattacharya, I. N., Paramguru, R. K. (2015). Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide. Trans. Nonferrous Met. Soc. China., 25, 2047−2053. doi: CrossRef

Yu, Yu., Song, Zh., Ge, H., Wei, G., Jiang, L. (2015). Effects of Magnetic Fields on the Electrodeposition Process of Cobalt. Int. J. Electrochem. Sci. 10, 4812–4819. Retrieved from

Yanpeng, Х., Taleb, A., Jegoub, P. (2013). Electro-deposition of cobalt films with an oriented fir tree-like morphology with adjustable wetting properties using a self-assembled gold nanoparticle modified HOPG electrode. J. Mater. Chem. A. 1, 11580–11588. doi: CrossRef

Sereduyk, V., Vargaluyk, V. (2014). Analysis of water molecules exchange mechanism in 3d cation aquacomplex. Bulletin of Dnipropetrovsk University. Series Chemistry, 21(20), 105−109. doi: CrossRef

Sereduk, V. O. (2014). [The influence of ligands nature on electrochemical reactions involving chrome cation complexes] (Unpublished doctoral dissertation). Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine (in Ukrainian). Retrieved from

Vargalyuk, V. F., Polonskyy, V. А., Borshchevych, L. V., Demchyshyna, О. V. (2014). The mechanism of electroreduction of aquacomplexes Nickel. Quantum-chemical analysis. Canadian Journal of Science, Education and Culture. Series Chemistry, Biology, Medicine. 2(6), 171–178.

Santos, J. S., Trivinho-Strixino, F., Pereira, E. C. (2010). Investigation of Co(OH)2 formation during cobalt electrodeposition using a chemometric procedure. Surf. Coat. Technol. 205, 2585–2589. doi: CrossRef

Schmidt, M. W., Baldridge, K. K., Boatzee, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Shujun, Su, Windus, T. L., Dupuis, M., Montgomery, J. A. (1993). General atomic and molecular electronic-structure system. J. Comput. Chem. 14, 1347–1363. doi: CrossRef

Lee, C., Yang, W., Parr, R. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(2), 785−790. doi: CrossRef

Becke, A. D. (1993). Dencity-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648−5652. doi: CrossRef

Franczak, A., Bohr, F., Levesque, A., Chopart, J.-P. (2015). Quantum Chemical Study of Hydrogen Evolution during Cobalt Electrodeposition. Research & Reviews: Journal of Chemistry. 4(4), 74−86. Retrieved from researchgate

Cossi, M., Scalmani, G., Rega, N., Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanocal and classical calculations on molecules in solution. J. Chem. Phys. 117, P.43–54. doi: CrossRef

Seredyuk, V. A., Vargalyuk, V. F. (2008). Estimation of Reliability of Quantum-Chemical Calculations of Electronic Transitions in Aqua Complexes of Transition Metals. Russ. J. Electrochem. 44 (10), 20−27. doi: CrossRef

Guirenko, A. A. (2007). [Oxide-hydroxide nickel composite plating: Obtaining and electrocatalytic properties] (Unpublished doctoral dissertation). Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine (in Russian). Retrieved from

Protsenko, V., Danilov, F. (2009). Kinetics and mechanism of chromium electrodeposition from formiate and oxalate solutions of Cr(III) compounds. Electrochim. Acta. 54 (24), 5666–5672. doi: CrossRef

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Chemistry and Technologies
eISSN: 2663-2942 | pISSN: 2663-2934
Address of
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University