Quantum chemical analysis of Со<sup>2+</sup> aqua complexes electrochemical reduction





cobalt aqua complexes, electrochemical reduction, quantum chemical modeling


Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method) as to [Co(H2O)n]z(H2O)6–n clusters for z = 0, 1, 2 and n=1÷6, it has been demonstrated that electrochemical reduction of [Co(H2O)6]2+ aqua complexes runs stage-wise. At the first stage, an electron injected into the [Co(H2O)6]2+ complex is entirely located in the orbital of the central atom, as z(Co) herewith changes from +1.714 е to +0.777 е. The weakening of Со–ОН2 bonds leads to decomposition of resulting [Co(H2O)6]+ particles into two energetically related forms – [Co(H2O)4]+ and [Co(H2O)3]+. Further reduction of these intermediates runs differently. Electron injection into the [Co(H2O)3]+ intermediate terminatesthe transition of Со2+-ions to Со0 z(Co)= –0.264 е. This process is accompanied by rapid decomposition of [Co(H2O)3]0 product into monohydrate atom of cobalt Со(Н2О). On the contrary, electron injection into the [Co(H2O)4]+ intermediate leads to emergence of a specific structure – [Co+(H2O)(Н2О)3]¹0, whereby the electron is located in the atoms of cobalt only by 28%, and by 72% in cobalt-coordinated water molecules, clearly focusing on one of the. In this molecule, z(H2O) changes from +0.148 е to –0.347 е. There is an assumption that a non-equilibrium [Co+(H2O)(Н2О)3]0¹ form transits to [Co(ОH)(Н2О)3]0 hydroxo-form, which further disproportionates turning into Co(ОH)2 hydroxide. In order to reduce the impact of this unfavorable reaction pathway on the overall reaction rate Со2+ + 2ē = Со0, we suggest raising the temperature to ensure complete dissociation of [Co(H2O)4]+ to [Co(H2O)3]+.

Author Biographies

Viktor F. Vargalyuk, Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipro, 49010

химический факультет, декан

Andrey O. Borschevich, Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipro, 49010

химический факультет. аспирант

Larisa V. Borschevich, Oles Honchar Dnipropetrovsk National University, 72 Gagarin Ave., Dnipro, 49010

химический факультет, доцент кафедры физической и неорганической химии



Kozin, L. F. (1989). [Electrodeposition and dissolution of multivalent metals] Kiev, Ukraine: Naukova Dumka (in Russian).

Sahari, A., Mokhtari, S. (2013). Effect of pH at Early Formed Structures in Cobalt Electro-deposition. Asian J. Chem. 25(8), 4137−4140. doi: http://dx.doi.org/10.14233/ajchem.2013.11031 CrossRef

Krasikov, V. L. (2015). [The role of electrochemical cobalt reduction intermediates in the formation of Oxygen-containing admixtures] Yzvestyja SPbGhTY(TU). Khymyja y khymycheskaja tekhnologhyja. 31, 40−46. (in Russian). Retrieved from https://www.researchgate.net/profile/Vladimir_Krasikov/publication/291170761 researchgate

Lafores, M., Medvediev, А. J., Katuso, К., Chvarceher, V., Маsliy, А. I. (2007). Dependence of a cathode layer structure on pH under cobalt electrodeposition from water sulfate solutions. Russ. J. Electrochem. 43(7), 856–858. doi: https://doi.org/10.1134/S1023193507070178 CrossRef

Kasikov, А. G., Diakova, L. V. (2015). [New ways of obtaining cobalt and its salts from cobalt(II) chloride solutions]. Trudy Koljskogho nauchnogho centra RAN. 5(31), 136–139. (in Russian)

Patnaik, P., Padhy, S. K., Tripathy, B. C., Bhattacharya, I. N., Paramguru, R. K. (2015). Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide. Trans. Nonferrous Met. Soc. China., 25, 2047−2053. doi: https://doi.org/10.1016/S1003-6326(15)63814-6 CrossRef

Yu, Yu., Song, Zh., Ge, H., Wei, G., Jiang, L. (2015). Effects of Magnetic Fields on the Electrodeposition Process of Cobalt. Int. J. Electrochem. Sci. 10, 4812–4819. Retrieved from http://www.electrochemsci.org/-papers/vol10/100604812.pdf electrochemsci.org

Yanpeng, Х., Taleb, A., Jegoub, P. (2013). Electro-deposition of cobalt films with an oriented fir tree-like morphology with adjustable wetting properties using a self-assembled gold nanoparticle modified HOPG electrode. J. Mater. Chem. A. 1, 11580–11588. doi: http://dx.doi.org/10.1039/C3TA12357J CrossRef

Sereduyk, V., Vargaluyk, V. (2014). Analysis of water molecules exchange mechanism in 3d cation aquacomplex. Bulletin of Dnipropetrovsk University. Series Chemistry, 21(20), 105−109. doi: http://dx.doi.org/10.15421/081323 CrossRef

Sereduk, V. O. (2014). [The influence of ligands nature on electrochemical reactions involving chrome cation complexes] (Unpublished doctoral dissertation). Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine (in Ukrainian). Retrieved from http://udhtu.edu.ua/public/userfiles/file/dis_Seredyuk.pdf udhtu.edu.ua

Vargalyuk, V. F., Polonskyy, V. А., Borshchevych, L. V., Demchyshyna, О. V. (2014). The mechanism of electroreduction of aquacomplexes Nickel. Quantum-chemical analysis. Canadian Journal of Science, Education and Culture. Series Chemistry, Biology, Medicine. 2(6), 171–178.

Santos, J. S., Trivinho-Strixino, F., Pereira, E. C. (2010). Investigation of Co(OH)2 formation during cobalt electrodeposition using a chemometric procedure. Surf. Coat. Technol. 205, 2585–2589. doi: https://doi.org/10.1016/j.surfcoat.2010.10.005 CrossRef

Schmidt, M. W., Baldridge, K. K., Boatzee, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Shujun, Su, Windus, T. L., Dupuis, M., Montgomery, J. A. (1993). General atomic and molecular electronic-structure system. J. Comput. Chem. 14, 1347–1363. doi: https://doi.org/10.1002/jcc.540141112 CrossRef

Lee, C., Yang, W., Parr, R. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(2), 785−790. doi: https://doi.org/10.1103/PhysRevB.37.785 CrossRef

Becke, A. D. (1993). Dencity-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648−5652. doi: http://dx.doi.org/10.1063/1.464913 CrossRef

Franczak, A., Bohr, F., Levesque, A., Chopart, J.-P. (2015). Quantum Chemical Study of Hydrogen Evolution during Cobalt Electrodeposition. Research & Reviews: Journal of Chemistry. 4(4), 74−86. Retrieved from https://www.researchgate.net/profile/Agnieszka_Franczak/publication/299278285 researchgate

Cossi, M., Scalmani, G., Rega, N., Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanocal and classical calculations on molecules in solution. J. Chem. Phys. 117, P.43–54. doi: http://dx.doi.org/10.1063/1.1480445 CrossRef

Seredyuk, V. A., Vargalyuk, V. F. (2008). Estimation of Reliability of Quantum-Chemical Calculations of Electronic Transitions in Aqua Complexes of Transition Metals. Russ. J. Electrochem. 44 (10), 20−27. doi: https://doi.org/10.1134/S1023193508100042 CrossRef

Guirenko, A. A. (2007). [Oxide-hydroxide nickel composite plating: Obtaining and electrocatalytic properties] (Unpublished doctoral dissertation). Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine (in Russian). Retrieved from https://www.br.com.-ua/referats/dysertacii_ta_autoreferaty/58606-2.html br.com

Protsenko, V., Danilov, F. (2009). Kinetics and mechanism of chromium electrodeposition from formiate and oxalate solutions of Cr(III) compounds. Electrochim. Acta. 54 (24), 5666–5672. doi: https://doi.org/10.1016/j.electacta.2009.04.072 CrossRef