The electrochemical oxidation of 4-nitroaniline and 4-nitrophenol on modified PbO<sub>2</sub>-electrodes

Authors

  • Olesia B. Shmychkova Ukrainian State University of Chemical Technology, 8, Gagarin Ave., 49005 Dnipro, Ukraine
  • Tatiana V. Luk’yanenko Ukrainian State University of Chemical Technology, 8, Gagarin Ave., 49005 Dnipro, Ukraine
  • Rossano Amadellia ISOF-CNR u.o.s Ferrara c/o Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46–44121 Ferrara, Italy
  • Alexander B. Velichenko Ukrainian State University of Chemical Technology, 8, Gagarin Ave., 49005 Dnipro, Ukraine https://orcid.org/0000-0003-1076-9991

DOI:

https://doi.org/10.15421/081705

Keywords:

electrochemical oxidation, hydroxyl radicals, lead dioxide, methanesulfonate electrolyte

Abstract

The electrochemical oxidation of p-nitroanilline and p-nitrophenol on lead dioxide anodes, modified by different ionic dopants has been investigated. The general mechanism of the oxidation of organic compounds of aromatic nature includes oxidizing of compounds to the intermediates with quinoid structure, reactions of aromatic ring opening and formation of aliphatic products (mainly acids) and in ideal case – the complete mineralization to CO2 and H2O. According to obtained results one can conclude that both reactions occur via formation of p-benzoquinon. Calculations, based on kinetic studies of the reaction, have shown that the rate constant of the degradation of the organics involved depends on the composition of the electrode material and varies due to the nature and the content of ionic additives in lead dioxide. The maximum interest for the electrochemical destruction of organic substances represents lead dioxide electrodes modified by bismuth to which a rate constant of p-nitroaniline oxidation increases in 1.6 times compared with nonmodified electrodes. Maximum electrocatalytic activity  is achieved by increasing the proportion of α-phase, on the one hand, and increase the crystalline zone of oxide on the other, which leads to increased amounts of oxygen containing particles strongly bounded to the electrode surface that participate in the electrochemical oxidation of aromatic compounds.

References

Oturan, M. A., Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev. Env. Sci. Tech., 44, 2577–2641. doi: http://dx.doi.org/10.1080/10643389.2013.829765 CrossRef

Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts., 16, 1182–1203. doi: http://dx.doi.org/10.1039/C3EM00679D CrossRef

Brillas, E., Martinez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal., B, 166–167, 603–643. doi: https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRef

Martinez-Huitle, C. A., Brillas, E. (2009). Decont-amination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal., B, 87, 105–145. doi: https://doi.org/10.1016/j.apcatb.2008.09.017 CrossRef

Oturan, M. A., Pimentel, M., Oturan N., Sires, I. (2008). Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochim. Acta, 54, 173–182. doi: https://doi.org/10.1016/j.electacta.2008.08.012 CrossRef

Vargas, R., Borras, C., Mendez, D., Mostany, J., Scharifker, B. R. (2016). Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. A review. J. Solid State Electrochem., 20, 875–893. doi: https://doi.org/10.1007/s10008-015-2984-7 CrossRef

Pera-Titus, M., Garcıa-Molina, V., Baсos, M. A., Gimenez, J., Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal., B, 47, 219–256. doi: https://doi.org/10.1016/j.apcatb.2003.09.010 CrossRef

Enache, T. A., Oliveira-Brett, A. M. (2011). Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem., 655, 9–16. doi: https://doi.org/10.1016/j.jelechem.2011.02.022 CrossRef

Dhaouadi, A., Adhoum, N. (2009). Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J. Electroanal. Chem., 637, 33–42. doi: https://doi.org/10.1016/j.jelechem.2009.09.027 CrossRef

Antonopoulou, M., Evgenidou, E., Lambropoulou, D., Konstantinou, I. (2014). A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res., 53, 215–234. doi: https://doi.org/10.1016/j.watres.2014.01.028 CrossRef

Shmychkova, O., Luk'yanenko, T., Amadelli, R., Velichenko, A. (2016). Electrodeposition of Ni2+-doped PbO2 and physico-chemical of the coating. J. Electroanal. Chem., 774, 88-94. doi: https://doi.org/10.1016/j.jelechem.2016.05.017 CrossRef

Shmychkova, O., Luk'yanenko, T., Yakubenko, A., Amadelli, R., Velichenko, A. (2015). Electrooxidation of some phenolic compounds at Bi-doped PbO2. Appl. Catal., B, 162, 346–351. doi: https://doi.org/10.1016/j.apcatb.2014.07.011 CrossRef

STOE WinXPOW, version 3.03. (2010). Darmstadt: Stoe & Cie GmbH.

Kraus, W., Nolze, G. (2000). PowderCell for Windows (version 2.4) Berlin: Federal Institute for Materials Research and Testing.

Rodriguez-Carvajal, J. (2001). Recent developments of the program FULLPROF, Commission on powder diffraction (IUCr). Newsletter, 26, 12-19.

Vera, Y. M., de Carvalho, R. J., Torem, M. L., Calfa, B. A. (2009). Atrazine degradation by in situ electro-chemically generated ozone. Chem. Eng. J., 155, 691-697. doi: https://doi.org/10.1016/j.cej.2009.09.001 CrossRef

Comninellis C., Chen Guohua. (Ed.). Electrochemistry for the environment (2010). New York, USA: Springer. doi: http://dx.doi.org/10.1007/978-0-387-68318-8 CrossRef

Li, X., Pletcher, D., Walsh, F.C. (2011). Electrodeposited lead dioxide coatings. Chem. Soc. Rev., 40, 3879-3894. doi: http://dx.doi.org/10.1039/c0cs00213e CrossRef

Panizza, M., Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chem. Rev., 109, 6541–6569. doi: http://dx.doi.org/10.1021/cr9001319 CrossRef

Babak, A. A., Amadelli, R., De Battisti, A., Fateev, V. N. (1994). Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochim. Acta, 39, 1597–1602. doi: https://doi.org/10.1016/0013-4686(94)85141-7 CrossRef

Babak, A. A., Fateev, V. N., Amadelli, R., Potapova, G. F. (1994). Ozone electrosynthesis in an electrolyzer with solid polymer electrolyte. Russ. J. Electrochem., 30, 739–741.

Shmychkova, O., Luk'yanenko, T., Amadelli, R., Velichenko, A. (2014). Physico-chemical properties of PbO2-anodes doped with Sn4+ and complex ions. J. Electroanal. Chem., 717-718, 196-201. doi: https://doi.org/10.1016/j.jelechem.2014.01.029 CrossRef

Trassatti, S., Lodi, G. (1981). Electrodes of conductive metallic oxide. Part B. (pp. 521-626). Amsterdam, Oxford, New York.

Shmychkova, O., Luk'yanenko, T., Velichenko, A., Meda, L., Amadelli, R. (2013). Bi-doped PbO2 anodes: electrodeposition and physico-chemical properties. Electrochim. Acta, 111, 332–338. doi: https://doi.org/10.1016/j.electacta.2013.08.082 CrossRef

Shmychkova, O., Luk'yanenko, T., Velichenko, A., Amadelli, R. (2013). Electrodeposition of Ce-doped PbO2. J. Electroanal. Chem., 706, 86–92. doi: https://doi.org/10.1016/j.jelechem.2013.08.002 CrossRef

Liu, Y., Liu, H. (2008). Comparative studies on the electrocatalytic properties of modified PbO2 anodes. Electrochim. Acta, 53, 5077–5476. doi: https://doi.org/10.1016/j.electacta.2008.02.103 CrossRef

Kim, J., Korshin, G. V., Velichenko, A. B. (2005). Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Res., 39, 2527–2534. doi: https://doi.org/10.1016/j.watres.2005.04.070 CrossRef

Cao, J., Zhao, H., Cao, F., Zhang, J., Cao, C. (2009). Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes. Electrochim. Acta, 54, 2595–2602. doi: https://doi.org/10.1016/j.electacta.2008.10.049 CrossRef

Quiroz, M. A., Reyna, S., Martınez-Huitle, C. A., Ferro, S., De Battisti, A. (2005). Electrocatalytic oxidation of p-nitro-phenol from aqueous solutions at Pb/PbO2 anodes. Appl. Catal., B, 59, 259–266. doi: https://doi.org/10.1016/j.apcatb.2005.02.009 CrossRef

Iniesta, J., Gonzalez-Garsia, J., Exposito, E., Montiel, V., Aldaz, A. (2001). Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res., 35, 3291–3300. doi: https://doi.org/10.1016/S0043-1354(01)00043-4 CrossRef

Kawagoe, K. T., Johnson, D. C. (1994). Electro-synthesis and physicochemical properties of PbO2 films. J. Electrochem. Soc., 141, 3404–3409. doi: https://doi.org/10.1149/1.2059345 CrossRef

Borras, C., Laredo, T., Mostany, J., Scharifker, B. R. (2004). Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-vis and FTIR in situ spectroscopy. Electrochim. Acta, 49, 641–648. doi: https://doi.org/10.1016/j.electacta.2003.09.019 CrossRef

Widera, J., Cox, J. A. (2002). Electrochemical oxidation of aniline in a silica sol–gel matrix. Electrochem. Commun., 4, 118–122. doi: https://doi.org/10.1016/S1388-2481(01)00287-9 CrossRef

Downloads

Published

2017-11-30