Stanislav М. Makhno, Oksana P. Tarasyuk, Tetiana V. Cherniavska, Oleg V. Dzhuzha, Valeriy І. Parkhomenko, Sergiy P. Rogalsky


The aim of this research was to develop polymer-electrolyte membrane on the base of commercial polyimide Matrimid which has high proton conductivity at elevated temperatures above 100 °C. Hydrophobic ionic liquid 1-butylimidazolium bis(trifluoromethylsulfonyl)imide (BIM-TFSI) has been synthesized and used as proton conducting electrolyte. The electrical conductivity of the ionic liquid determined by electrochemical impedance method was found to have a value of 10–3 S/cm in the temperature range from 100 to 180 °С. The composite film based on Matrimid polyimide containing 70 wt % of protic ionic liquid has been prepared by casting from methylene chloride solution. Polyetheramine Jeffamine® D-2000 was used as a cross-linking agent for polyimide. According to mechanical and thermal analysis data, Matrimid/BIM-TFSI composite has tensile strength of 18 MPa and thermal degradation point of 306 °С. Electrophysical properties of polyimide film impregnated with ionic liquid was studied by two-probe technique at the frequencies of 0.1, 1.0 and 10 kHz by using immitance meter in the temperature range from 25 to 180 °С. The electrical conductivity was found to be 2.7∙10–4 S/cm at room temperature and reached the value of 1.5∙10–3 S/cm at 180 °С. Thus, in this work proton conducting membrane based on commercial polyimide has been obtained for the first time by simple method without additional sulfonation stage. Matrimid/BIM-TFSI composite membrane is promising for applications in fuel cells operating at elevated temperature without external humidification.


полімер - електролітна мембрана; поліімід; іонна рідина; паливні елементи; протона провідність


Behling, N. K. (2012). Fuel cells: current technology challenges and future research needs. Oxford, UK: Newnes.

Zhang, H., Shen, P. K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev., 112(5), 2780–2832. https://doi.org/10.1021/cr200035s

Breeze, P. (2017). Fuel cells. London, UK: Academic Press.

Kraytsberg, A., Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy fuels., 28(12), 7303–7330. https://doi.org/10.1021/ef501977k

Kumar, R., Xu, C., Scott, K. (2012). Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RCS. Adv., 2, 8777–8782. https://doi.org/10.1039/C2RA20225E

Sahu, A. K., Ketpang, K., Shanmugam, S., Kwon, O., Lee, S., Kim, H. (2016). Sulfonated graphene-Nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J. Phys. Chem. C. , 120(29), 15855–15866. https://doi.org/10.1021/acs.jpcc.5b11674

Alcaide, F., Àlvarez, G., Ganborena, L., Iruin, J. J., Miguel, O., Alberto Blazquez, J. (2009). Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications Polym. Bull., 62(6), 813–827. https://doi.org/10.1007/s00289-009-0061-z

Pu, H., Qin, H., Tang, L., Teng, X., Chang, Z. (2009). Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Elechtrochim. Acta, 54(9), 2603–2609. http://doi.org/10.1016/j.electacta.2008.10.057

Zuo, Z., Fu, Y., Manthiram, A. (2012). Novel blend membranes based on acid-base interactions for fuel cells. Polymers, 4, 1627–1644. https://doi.org/10.3390/polym4041627

Giang, G., Qiao, J., Hong, F. (2012). Application of phosphoric acid and phytic-acid doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrogen Energy, 37(11), 9182–9192. https://doi.org/10.1016/j.ijhydene.2012.02.195

Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B. J., Ingram, A., Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. J. Power Sourc., 231(1), 264–278. https://doi.org/10.1016/j.jpowsour.2012.11.126

Hwang, K., Kim, J.-H., Kim, S.-Y., Byun, H. (2014). Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies, 7, 1721–1732. https://doi.org/10.3390/en7031721

Susan, Md. A. B. H., Noda, A., Mitsushima, S., Watanabe, M. (2003). Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun., 8, 938–939. https://doi.org/10.1039/B300959A

Noda, A., Susan, Md. A. B. H., Kudo, K., Mitsushima, S. (2003). Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B, 107(17), 4024–4033. https://doi.org/10.1021/jp022347p

Nakamoto, H., Watanabe, M. (2007). Brönsted acid-base ionic liquids for fuel cell electrolytes. Chem. Commun., 24, 2539-2541. https://doi.org/10.1039/B618953A

Greaves, T., Drummond, C. (2008). Protic Ionic Liquids: Properties and Applications. Chem. Rev., 108(1), 206–237. https://doi.org/10.1021/cr068040u

Lee, S.-Y., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., Watanabe, M. (2010). Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc., 132(28), 9764–9773. https://doi.org/10.1021/ja102367x

Lee, S.-Y., Yasuda, T., Watanabe, M. (2010). Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J. Power Sourc., 195(18), 5909–5914. http://doi.org/10.1016/j.jpowsour.2009.11.045

Deligöz, H., Yilmazoğlu, M. (2011). Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells. J. Power Sourc., 196(7), 3496–3502. http://doi.org/10.1016/j.jpowsour.2010.12.033

Chen, B.-K., Wu, T.-Y., Kuo, C.-W., Peng, Y-C., Shin, I.-C., Hao, L., Sun, I.-W. (2013). 4,4'-oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction. Int. J. Hydrogen Energy, 38(26), 11321–11330. http://doi.org/10.1016/j.ijhydene.2013.06.053

Langevin, D., Nguyen, Q. T., Marais, S., Karademir, S., Sanchez, J.-Y., Iojoiu, C., Martinez, M., Mercier, R., Judeinstein, P., Chappey, C. (2013). High-temperature ionic-conducting material: advanced structure and improved performance. J. Phys. Chem. C., 117(30), 15552–15561. https://doi.org/10.1021/jp312575m

Dahi, A., Fatyeyeva, K., Langevin, D., Chappey, C., Rogalsky, S., Tarasyuk, O., Marais, S. (2014). Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Elechtrochim. Acta., 130, 830–840. http://doi.org/10.1016/j.electacta.2014.03.071

Matrimid® 5218 technical datasheet. http://adhesives.specialchem.com/product/p-huntsman-matrimid-5218

Nistor, C., Shishatskiy, S., Popa, M., Nunes, S. P. (2008). Composite membranes with cross-linked Matrimid selective layer for gas preparation. EEMG, 7(6), 653-659. http://omicron.ch.tuiasi.ro/EEMJ

Zhao, H.-Y., Cao, Y.-M., Ding, X.-L., Zhou, M.-Q., Yuan, Q. (2008). Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties. J. Membrane Sci., 323(1), 176–184. http://doi.org/10.1016/j.memsci.2008.06.026

Kausar, A. (2017). Progression from polyimide to polyimide composite in proton-exchange membrane fuel cells: a review. Polym. Plast. Technol. Eng., (Accepted manuscript published online). http://dx.doi.org/10.1080/03602559.2016.1275688

DOI: https://doi.org/10.15421/081708


  • There are currently no refbacks.

Comments on this article

View all comments

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Chemistry and Technologies
Address of founder:chem.dnu@gmail.com
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University