POLYMER-ELECTROLYTE MEMBRANE FOR FUEL CELLS BASED ON CROSS-LINKED POLYIMIDE AND PROTIC IONIC LIQUID

Authors

DOI:

https://doi.org/10.15421/081708

Keywords:

полімер - електролітна мембрана, поліімід, іонна рідина, паливні елементи, протона провідність

Abstract

The aim of this research was to develop polymer-electrolyte membrane on the base of commercial polyimide Matrimid which has high proton conductivity at elevated temperatures above 100 °C. Hydrophobic ionic liquid 1-butylimidazolium bis(trifluoromethylsulfonyl)imide (BIM-TFSI) has been synthesized and used as proton conducting electrolyte. The electrical conductivity of the ionic liquid determined by electrochemical impedance method was found to have a value of 10–3 S/cm in the temperature range from 100 to 180 °С. The composite film based on Matrimid polyimide containing 70 wt % of protic ionic liquid has been prepared by casting from methylene chloride solution. Polyetheramine Jeffamine® D-2000 was used as a cross-linking agent for polyimide. According to mechanical and thermal analysis data, Matrimid/BIM-TFSI composite has tensile strength of 18 MPa and thermal degradation point of 306 °С. Electrophysical properties of polyimide film impregnated with ionic liquid was studied by two-probe technique at the frequencies of 0.1, 1.0 and 10 kHz by using immitance meter in the temperature range from 25 to 180 °С. The electrical conductivity was found to be 2.7∙10–4 S/cm at room temperature and reached the value of 1.5∙10–3 S/cm at 180 °С. Thus, in this work proton conducting membrane based on commercial polyimide has been obtained for the first time by simple method without additional sulfonation stage. Matrimid/BIM-TFSI composite membrane is promising for applications in fuel cells operating at elevated temperature without external humidification.

Author Biographies

Stanislav М. Makhno, O. O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Head of laboratory of electrophysics of nanomaterials, PhD, physics and mathematics, Senior research scientist

Oksana P. Tarasyuk, Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

Junior research scientist at the laboratory of modification of polymers

Tetiana V. Cherniavska, O. O. Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

Research scientist at the laboratory of oxide nanocomposites, PhD, chemistry

Oleg V. Dzhuzha, Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

Research scientist at the laboratory of modification of polymers, PhD, technical sciences

Valeriy І. Parkhomenko, Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

Junior research scientist at the laboratory of modification of polymers

Sergiy P. Rogalsky, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine

Head of laboratory of modification of polymers, PhD, chemistry

References

Behling, N. K. (2012). Fuel cells: current technology challenges and future research needs. Oxford, UK: Newnes.

Zhang, H., Shen, P. K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev., 112(5), 2780–2832. https://doi.org/10.1021/cr200035s

Breeze, P. (2017). Fuel cells. London, UK: Academic Press.

Kraytsberg, A., Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy fuels., 28(12), 7303–7330. https://doi.org/10.1021/ef501977k

Kumar, R., Xu, C., Scott, K. (2012). Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RCS. Adv., 2, 8777–8782. https://doi.org/10.1039/C2RA20225E

Sahu, A. K., Ketpang, K., Shanmugam, S., Kwon, O., Lee, S., Kim, H. (2016). Sulfonated graphene-Nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J. Phys. Chem. C. , 120(29), 15855–15866. https://doi.org/10.1021/acs.jpcc.5b11674

Alcaide, F., Àlvarez, G., Ganborena, L., Iruin, J. J., Miguel, O., Alberto Blazquez, J. (2009). Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications Polym. Bull., 62(6), 813–827. https://doi.org/10.1007/s00289-009-0061-z

Pu, H., Qin, H., Tang, L., Teng, X., Chang, Z. (2009). Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Elechtrochim. Acta, 54(9), 2603–2609. http://doi.org/10.1016/j.electacta.2008.10.057

Zuo, Z., Fu, Y., Manthiram, A. (2012). Novel blend membranes based on acid-base interactions for fuel cells. Polymers, 4, 1627–1644. https://doi.org/10.3390/polym4041627

Giang, G., Qiao, J., Hong, F. (2012). Application of phosphoric acid and phytic-acid doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrogen Energy, 37(11), 9182–9192. https://doi.org/10.1016/j.ijhydene.2012.02.195

Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B. J., Ingram, A., Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. J. Power Sourc., 231(1), 264–278. https://doi.org/10.1016/j.jpowsour.2012.11.126

Hwang, K., Kim, J.-H., Kim, S.-Y., Byun, H. (2014). Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies, 7, 1721–1732. https://doi.org/10.3390/en7031721

Susan, Md. A. B. H., Noda, A., Mitsushima, S., Watanabe, M. (2003). Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun., 8, 938–939. https://doi.org/10.1039/B300959A

Noda, A., Susan, Md. A. B. H., Kudo, K., Mitsushima, S. (2003). Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B, 107(17), 4024–4033. https://doi.org/10.1021/jp022347p

Nakamoto, H., Watanabe, M. (2007). Brönsted acid-base ionic liquids for fuel cell electrolytes. Chem. Commun., 24, 2539-2541. https://doi.org/10.1039/B618953A

Greaves, T., Drummond, C. (2008). Protic Ionic Liquids: Properties and Applications. Chem. Rev., 108(1), 206–237. https://doi.org/10.1021/cr068040u

Lee, S.-Y., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., Watanabe, M. (2010). Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc., 132(28), 9764–9773. https://doi.org/10.1021/ja102367x

Lee, S.-Y., Yasuda, T., Watanabe, M. (2010). Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J. Power Sourc., 195(18), 5909–5914. http://doi.org/10.1016/j.jpowsour.2009.11.045

Deligöz, H., Yilmazoğlu, M. (2011). Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells. J. Power Sourc., 196(7), 3496–3502. http://doi.org/10.1016/j.jpowsour.2010.12.033

Chen, B.-K., Wu, T.-Y., Kuo, C.-W., Peng, Y-C., Shin, I.-C., Hao, L., Sun, I.-W. (2013). 4,4'-oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction. Int. J. Hydrogen Energy, 38(26), 11321–11330. http://doi.org/10.1016/j.ijhydene.2013.06.053

Langevin, D., Nguyen, Q. T., Marais, S., Karademir, S., Sanchez, J.-Y., Iojoiu, C., Martinez, M., Mercier, R., Judeinstein, P., Chappey, C. (2013). High-temperature ionic-conducting material: advanced structure and improved performance. J. Phys. Chem. C., 117(30), 15552–15561. https://doi.org/10.1021/jp312575m

Dahi, A., Fatyeyeva, K., Langevin, D., Chappey, C., Rogalsky, S., Tarasyuk, O., Marais, S. (2014). Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Elechtrochim. Acta., 130, 830–840. http://doi.org/10.1016/j.electacta.2014.03.071

Matrimid® 5218 technical datasheet. http://adhesives.specialchem.com/product/p-huntsman-matrimid-5218

Nistor, C., Shishatskiy, S., Popa, M., Nunes, S. P. (2008). Composite membranes with cross-linked Matrimid selective layer for gas preparation. EEMG, 7(6), 653-659. http://omicron.ch.tuiasi.ro/EEMJ

Zhao, H.-Y., Cao, Y.-M., Ding, X.-L., Zhou, M.-Q., Yuan, Q. (2008). Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties. J. Membrane Sci., 323(1), 176–184. http://doi.org/10.1016/j.memsci.2008.06.026

Kausar, A. (2017). Progression from polyimide to polyimide composite in proton-exchange membrane fuel cells: a review. Polym. Plast. Technol. Eng., (Accepted manuscript published online). http://dx.doi.org/10.1080/03602559.2016.1275688

Published

2018-01-01