Stanislav М. Makhno, Oksana P. Tarasyuk, Tetiana V. Cherniavska, Oleg V. Dzhuzha, Valeriy І. Parkhomenko, Sergiy P. Rogalsky


The aim of this research was to develop polymer-electrolyte membrane on the base of commercial polyimide Matrimid which has high proton conductivity at elevated temperatures above 100 °C. Hydrophobic ionic liquid 1-butylimidazolium bis(trifluoromethylsulfonyl)imide (BIM-TFSI) has been synthesized and used as proton conducting electrolyte. The electrical conductivity of the ionic liquid determined by electrochemical impedance method was found to have a value of 10–3 S/cm in the temperature range from 100 to 180 °С. The composite film based on Matrimid polyimide containing 70 wt % of protic ionic liquid has been prepared by casting from methylene chloride solution. Polyetheramine Jeffamine® D-2000 was used as a cross-linking agent for polyimide. According to mechanical and thermal analysis data, Matrimid/BIM-TFSI composite has tensile strength of 18 MPa and thermal degradation point of 306 °С. Electrophysical properties of polyimide film impregnated with ionic liquid was studied by two-probe technique at the frequencies of 0.1, 1.0 and 10 kHz by using immitance meter in the temperature range from 25 to 180 °С. The electrical conductivity was found to be 2.7∙10–4 S/cm at room temperature and reached the value of 1.5∙10–3 S/cm at 180 °С. Thus, in this work proton conducting membrane based on commercial polyimide has been obtained for the first time by simple method without additional sulfonation stage. Matrimid/BIM-TFSI composite membrane is promising for applications in fuel cells operating at elevated temperature without external humidification.


полімер - електролітна мембрана; поліімід; іонна рідина; паливні елементи; протона провідність


Behling, N. K. (2012). Fuel cells: current technology challenges and future research needs. Oxford, UK: Newnes.

Zhang, H., Shen, P. K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev., 112(5), 2780–2832.

Breeze, P. (2017). Fuel cells. London, UK: Academic Press.

Kraytsberg, A., Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy fuels., 28(12), 7303–7330.

Kumar, R., Xu, C., Scott, K. (2012). Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RCS. Adv., 2, 8777–8782.

Sahu, A. K., Ketpang, K., Shanmugam, S., Kwon, O., Lee, S., Kim, H. (2016). Sulfonated graphene-Nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity. J. Phys. Chem. C. , 120(29), 15855–15866.

Alcaide, F., Àlvarez, G., Ganborena, L., Iruin, J. J., Miguel, O., Alberto Blazquez, J. (2009). Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications Polym. Bull., 62(6), 813–827.

Pu, H., Qin, H., Tang, L., Teng, X., Chang, Z. (2009). Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Elechtrochim. Acta, 54(9), 2603–2609.

Zuo, Z., Fu, Y., Manthiram, A. (2012). Novel blend membranes based on acid-base interactions for fuel cells. Polymers, 4, 1627–1644.

Giang, G., Qiao, J., Hong, F. (2012). Application of phosphoric acid and phytic-acid doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrogen Energy, 37(11), 9182–9192.

Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B. J., Ingram, A., Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. J. Power Sourc., 231(1), 264–278.

Hwang, K., Kim, J.-H., Kim, S.-Y., Byun, H. (2014). Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies, 7, 1721–1732.

Susan, Md. A. B. H., Noda, A., Mitsushima, S., Watanabe, M. (2003). Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun., 8, 938–939.

Noda, A., Susan, Md. A. B. H., Kudo, K., Mitsushima, S. (2003). Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B, 107(17), 4024–4033.

Nakamoto, H., Watanabe, M. (2007). Brönsted acid-base ionic liquids for fuel cell electrolytes. Chem. Commun., 24, 2539-2541.

Greaves, T., Drummond, C. (2008). Protic Ionic Liquids: Properties and Applications. Chem. Rev., 108(1), 206–237.

Lee, S.-Y., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., Watanabe, M. (2010). Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc., 132(28), 9764–9773.

Lee, S.-Y., Yasuda, T., Watanabe, M. (2010). Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J. Power Sourc., 195(18), 5909–5914.

Deligöz, H., Yilmazoğlu, M. (2011). Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells. J. Power Sourc., 196(7), 3496–3502.

Chen, B.-K., Wu, T.-Y., Kuo, C.-W., Peng, Y-C., Shin, I.-C., Hao, L., Sun, I.-W. (2013). 4,4'-oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction. Int. J. Hydrogen Energy, 38(26), 11321–11330.

Langevin, D., Nguyen, Q. T., Marais, S., Karademir, S., Sanchez, J.-Y., Iojoiu, C., Martinez, M., Mercier, R., Judeinstein, P., Chappey, C. (2013). High-temperature ionic-conducting material: advanced structure and improved performance. J. Phys. Chem. C., 117(30), 15552–15561.

Dahi, A., Fatyeyeva, K., Langevin, D., Chappey, C., Rogalsky, S., Tarasyuk, O., Marais, S. (2014). Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Elechtrochim. Acta., 130, 830–840.

Matrimid® 5218 technical datasheet.

Nistor, C., Shishatskiy, S., Popa, M., Nunes, S. P. (2008). Composite membranes with cross-linked Matrimid selective layer for gas preparation. EEMG, 7(6), 653-659.

Zhao, H.-Y., Cao, Y.-M., Ding, X.-L., Zhou, M.-Q., Yuan, Q. (2008). Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties. J. Membrane Sci., 323(1), 176–184.

Kausar, A. (2017). Progression from polyimide to polyimide composite in proton-exchange membrane fuel cells: a review. Polym. Plast. Technol. Eng., (Accepted manuscript published online).

Comments on this article

View all comments

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Chemistry and Technologies
eISSN: 2663-2942 | pISSN: 2663-2934
Address of
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University