MODIFICATION TECHNOLOGY OF MONTMORILLONITE BY POLYIONENES
DOI:
https://doi.org/10.15421/081801Keywords:
modification, montmorillonite, polyionenes, exfoliation.Abstract
Technology of obtaining montmorillonite modified by polyionenes is developed. Macromolecular polymer intercalation of a quaternary ammonium salt of montmorillonite intercrystalline space is shown to be accompanied with increased interlayer distances from 1.08 nm to 1.67 nm. The technique of synthesis of montmorillonite modified by polyionenes is suggested. Optimal conditions for sorption of polyionenes molecules with montmorillonite are found to be: the concentration of aqueous dispersion of montmorillonite is 1 %, the temperature of the reaction medium is 40 °C, the montmorillonite-polyionene ratio is 3 : 1, the processing time is 24 hours. The mechanism of montmorillonite modification is suggested to involve the next steps: connection of organic cations to montmorillonite surface determined by attachment of organic cations to exchange position during ion-exchange adsorption and adsorption of organic cations with acid sylanol groups, i.e. torn bonds on crystal faces. These processes are shown to result in more perfect structure by organic cations adsorption with acid sylanol groups (torn bonds on crystal faces).
References
Wilde, G. (2009). Nanostructured Materials. Elsevier, Amsterdam.
Yu, L., Wang, D., Tan Yu., Du, J., Huang, J. (2018). Super tough bentonite/SiO2-based dual nanocomposite hydrogels using silane as both an intercalator and a crosslinker Applied Clay Sci. 156, 53–60. http://doi.org/10.1016/j.clay.2018.01.026
Liborio, P., Oliveira, V., Marques, M. (2015). New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation. Applied Clay Sci. 111, 44–49. http://doi.org/10.1016/j.clay.2015.04.003
Nicolais, L., Carotenuto, G., 2005. Metal-Polymer Nanocomposites. John Wiley & Sons, NY.
Koo, J. 2006. Polymer Nanocomposites : Processing, Characterization And Applications: McGraw Hill Professional, NY.
Krishnan, B., Mahalingam, S. (2017). Improved surface morphology of silver/copper oxide/bentonite nanocomposite using aliphatic ammoniumbased ionic liquid for enhanced biological activities. J. Molecular Liquids. 241, 1044–1058. https://doi.org/10.1016/j.molliq.2017.06.104
El-Dib, F. I., Tawfik, F. M., Eshaq, Gh., Hefni, H. H. H., ElMetwally, A. E. (2016). Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays. Int. J. Biological Macromolecules. 86, 750–755. https://doi.org/10.1016/j.ijbiomac.2016.01.108
Sevim, İ. (2017). Intercalation of vermiculite in presence of surfactants. Applied Clay Sci. 146, 7–13. https://doi.org/10.1016/j.clay.2017.05.030
Malinova, L., Jaksch, D., Brožek, J. (2016). Montmorillonite modified with lactim methyl ethers having different ring sizes. Applied Clay Sci. 129, 20–26. http://doi.org/10.1016/j.clay.2016.04.017
Kleyi, P. E., Raya, S. S., Abia, A. L. K., Ubomba-Jaswa, E., Wesley-Smith, J., Maitya, A. (2016). Preparation and evaluation of quaternary imidazolium-modified montmorillonite for disinfection of drinking water. Applied Clay Sci. 127–128, 95–104. http://doi.org/10.1016/j.clay.2016.04.012
Giannakas, A., Tsagkalias, I., Achilias, D. S., Ladavos, A. (2017). A novel method for the preparation of inorganic and organo-modified montmorillonite essential oil hybrids. Applied Clay Sci. 146, 362–370. http://doi.org/10.1016/j.clay.2017.06.018
Ezquerro, C. S., Ric, G. I., Miñana, J. S., Bermejo, J. S. (2015). Characterization of montmorillonites modified with organic divalent phosphonium cations. Applied Clay Sci. 111, 1–9. http://doi.org/10.1016/j.clay.2015.03.022
Açışlı, Ö. Karaca, S. Gürses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Applied Clay Sci. 142, 90–99 http://doi.org/10.1016/j.clay.2016.12.009
Bertuoli, P. T., Piazza D., Scienza, L. S., Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltri-ethoxysilane. Applied Clay Sci. 87, 46–51. http://doi.org/10.1016/j.clay.2013.11.020
Faghihi, K., Abootalebi, A. S., Shabanian, M. (2013). New clay-reinforced polyamide nanocomposite based on
-phenylenediacrylic acid: Synthesis and properties. J. Saudi Chem. Soc. 17, 191–197. http://doi:10.1016/j.jscs.2011.03.007
Anil, M. K., Bhowmick, K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187.
Bee, S.-L., Abdullah, M. A. A., Mamat, A., Bee, S.-T., Sin, L.T., Hui, D., Rahmat, A. R. (2017) Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Composites Part B: Engineering. 110, 83–95. http://doi.org/10.1016/j.compositesb.2016.10.084
Gamba, M., Kovář, P., Pospíšil, M., Sánchez, R. M. T. (2017). Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Applied Clay Sci. 137, 59–68. http://doi.org/10.1016/j.clay.2016.12.001
Burmistr, M. V., Sukhyy, K. M., Shilov, V. V. Pissis, P., Gomza, Yu. P. (2005). Structure, thermal properties and ionic conductivity of polymeric quaternary ammonium salts (polyionenes) containing ethylene oxide and aliphatic chain fragments. Solid State Ionics. 176, 1787–1792. http://doi.org/10.1016/j.ssi.2005.04.032
Liu, L. M., Qi, Z. N., Zhu, X. G. (1999). Studies on nylon 6/clay nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138. http://doi.org/ 10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N
Ahmad, Z., Sarwar, M. I., Mark, J. E. (1997a). Dynamic-mechanical thermal analysis of aramid-silica hybrid composites prepared in a sol-gel process. J. Appl. Polym. Sci. 63, 1345–1352. http://doi.org/10.1002/(SICI)1097-4628(19970307)63:10<1345::AID-APP14>3.0.CO;2-3
Zulfiqar, S., Sarwar, M. I. (2008). Inclusion of aramid chains into the layered silicates through solution intercalation route. J. Incl. Phenom. Macrocycl. Chem. 62, 353–361. http://doi.org/10.1007/s10847-008-9478-5
Bibi, N., Sarwar, M. I., Ishaq, M., Ahmad, Z. (2007). Mechanical and thermal properties of nano-composites of poly (vinyl chloride) and co-poly (vinyl chloride-vinyl alcohol-vinyl acetate) with montmorillonite. Polym. Polym. Compos. 15, 313–319. http://www.polymerjournals.com/pdfdownload/995352.pdf
Burmistr, M. V., Sukhyy, K. M., Shilov, V. V., Pissis, P., Gomza, Yu. P. (2005). Synthesis, structure, thermal and mechanical properties of nanocomposites based on linear polymers and layered silicates modified by polymeric quaternary ammonium salts (ionenes). Polymer. 46, 12226–12232. http://doi.org/10.1016/j.polymer.2005.10.094
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Oles Honchar Dnipro NAtional University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).