MODIFICATION TECHNOLOGY OF MONTMORILLONITE BY POLYIONENES

Authors

  • Kostyantyn M Sukhyy State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Elena Belyanovskaya State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Mikhaylo P Sukhyy State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,

DOI:

https://doi.org/10.15421/081801

Keywords:

modification, montmorillonite, polyionenes, exfoliation.

Abstract

Technology of obtaining montmorillonite modified by polyionenes is developed. Macromolecular polymer intercalation of a quaternary ammonium salt of montmorillonite intercrystalline space is shown to be accompanied with increased interlayer distances from 1.08 nm to 1.67 nm. The technique of synthesis of montmorillonite modified by polyionenes is suggested. Optimal conditions for sorption of polyionenes molecules with montmorillonite are found to be: the concentration of aqueous dispersion of montmorillonite is 1 %, the temperature of the reaction medium is 40 °C, the montmorillonite-polyionene ratio is 3 : 1, the processing time is 24 hours. The mechanism of montmorillonite modification is suggested to involve the next steps: connection of organic cations to montmorillonite surface determined by attachment of organic cations to exchange position during ion-exchange adsorption and adsorption of organic cations with acid sylanol groups, i.e. torn bonds on crystal faces. These processes are shown to result in more perfect structure by organic cations adsorption with acid sylanol groups (torn bonds on crystal faces).

References

Wilde, G. (2009). Nanostructured Materials. Elsevier, Amsterdam.

Yu, L., Wang, D., Tan Yu., Du, J., Huang, J. (2018). Super tough bentonite/SiO2-based dual nanocomposite hydrogels using silane as both an intercalator and a crosslinker Applied Clay Sci. 156, 53–60. http://doi.org/10.1016/j.clay.2018.01.026

Liborio, P., Oliveira, V., Marques, M. (2015). New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation. Applied Clay Sci. 111, 44–49. http://doi.org/10.1016/j.clay.2015.04.003

Nicolais, L., Carotenuto, G., 2005. Metal-Polymer Nanocomposites. John Wiley & Sons, NY.

Koo, J. 2006. Polymer Nanocomposites : Processing, Characterization And Applications: McGraw Hill Professional, NY.

Krishnan, B., Mahalingam, S. (2017). Improved surface morphology of silver/copper oxide/bentonite nanocomposite using aliphatic ammoniumbased ionic liquid for enhanced biological activities. J. Molecular Liquids. 241, 1044–1058. https://doi.org/10.1016/j.molliq.2017.06.104

El-Dib, F. I., Tawfik, F. M., Eshaq, Gh., Hefni, H. H. H., ElMetwally, A. E. (2016). Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays. Int. J. Biological Macromolecules. 86, 750–755. https://doi.org/10.1016/j.ijbiomac.2016.01.108

Sevim, İ. (2017). Intercalation of vermiculite in presence of surfactants. Applied Clay Sci. 146, 7–13. https://doi.org/10.1016/j.clay.2017.05.030

Malinova, L., Jaksch, D., Brožek, J. (2016). Montmorillonite modified with lactim methyl ethers having different ring sizes. Applied Clay Sci. 129, 20–26. http://doi.org/10.1016/j.clay.2016.04.017

Kleyi, P. E., Raya, S. S., Abia, A. L. K., Ubomba-Jaswa, E., Wesley-Smith, J., Maitya, A. (2016). Preparation and evaluation of quaternary imidazolium-modified montmorillonite for disinfection of drinking water. Applied Clay Sci. 127–128, 95–104. http://doi.org/10.1016/j.clay.2016.04.012

Giannakas, A., Tsagkalias, I., Achilias, D. S., Ladavos, A. (2017). A novel method for the preparation of inorganic and organo-modified montmorillonite essential oil hybrids. Applied Clay Sci. 146, 362–370. http://doi.org/10.1016/j.clay.2017.06.018

Ezquerro, C. S., Ric, G. I., Miñana, J. S., Bermejo, J. S. (2015). Characterization of montmorillonites modified with organic divalent phosphonium cations. Applied Clay Sci. 111, 1–9. http://doi.org/10.1016/j.clay.2015.03.022

Açışlı, Ö. Karaca, S. Gürses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Applied Clay Sci. 142, 90–99 http://doi.org/10.1016/j.clay.2016.12.009

Bertuoli, P. T., Piazza D., Scienza, L. S., Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltri-ethoxysilane. Applied Clay Sci. 87, 46–51. http://doi.org/10.1016/j.clay.2013.11.020

Faghihi, K., Abootalebi, A. S., Shabanian, M. (2013). New clay-reinforced polyamide nanocomposite based on

-phenylenediacrylic acid: Synthesis and properties. J. Saudi Chem. Soc. 17, 191–197. http://doi:10.1016/j.jscs.2011.03.007

Anil, M. K., Bhowmick, K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187.

Bee, S.-L., Abdullah, M. A. A., Mamat, A., Bee, S.-T., Sin, L.T., Hui, D., Rahmat, A. R. (2017) Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Composites Part B: Engineering. 110, 83–95. http://doi.org/10.1016/j.compositesb.2016.10.084

Gamba, M., Kovář, P., Pospíšil, M., Sánchez, R. M. T. (2017). Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Applied Clay Sci. 137, 59–68. http://doi.org/10.1016/j.clay.2016.12.001

Burmistr, M. V., Sukhyy, K. M., Shilov, V. V. Pissis, P., Gomza, Yu. P. (2005). Structure, thermal properties and ionic conductivity of polymeric quaternary ammonium salts (polyionenes) containing ethylene oxide and aliphatic chain fragments. Solid State Ionics. 176, 1787–1792. http://doi.org/10.1016/j.ssi.2005.04.032

Liu, L. M., Qi, Z. N., Zhu, X. G. (1999). Studies on nylon 6/clay nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138. http://doi.org/ 10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N

Ahmad, Z., Sarwar, M. I., Mark, J. E. (1997a). Dynamic-mechanical thermal analysis of aramid-silica hybrid composites prepared in a sol-gel process. J. Appl. Polym. Sci. 63, 1345–1352. http://doi.org/10.1002/(SICI)1097-4628(19970307)63:10<1345::AID-APP14>3.0.CO;2-3

Zulfiqar, S., Sarwar, M. I. (2008). Inclusion of aramid chains into the layered silicates through solution intercalation route. J. Incl. Phenom. Macrocycl. Chem. 62, 353–361. http://doi.org/10.1007/s10847-008-9478-5

Bibi, N., Sarwar, M. I., Ishaq, M., Ahmad, Z. (2007). Mechanical and thermal properties of nano-composites of poly (vinyl chloride) and co-poly (vinyl chloride-vinyl alcohol-vinyl acetate) with montmorillonite. Polym. Polym. Compos. 15, 313–319. http://www.polymerjournals.com/pdfdownload/995352.pdf

Burmistr, M. V., Sukhyy, K. M., Shilov, V. V., Pissis, P., Gomza, Yu. P. (2005). Synthesis, structure, thermal and mechanical properties of nanocomposites based on linear polymers and layered silicates modified by polymeric quaternary ammonium salts (ionenes). Polymer. 46, 12226–12232. http://doi.org/10.1016/j.polymer.2005.10.094

Downloads

Published

2018-06-19