• Kostyantyn M Sukhyy State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’, Ukraine
  • Elena A Belyanovskaya State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Mikhaylo P. Sukhyy State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Vitaliy I. Tomilo State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Roman D. Lytovchenko State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,




extrusion, montmorillonіte, delamination, nanocomposites


The obtaining technology of nanocomposites based on polyamide-6 and organomodified montmorillonite is developed. The technological parameters of extrusion and injection molding, and their influence on the formation of nanoscale inorganic phase of the polyamide are investigated. Morphology and thermal behavior of polyamide-6, composites based on polyamide-6 and modified montmorillonite are studied by WAXS, XRD, DTA and DSC data. Morphology and thermal behavior of polyamide-6 and composites based on polyamide-6 and modified montmorillonite are shown to be in a strong juxtaposition. New γ-phase formation is revealed in composite polyamide-6 – 1–2 % of modified montmorillonite in contrast with polyamide-6 and mechanical mixtures of polyamide-6 and montmorillonite. Optimal concentrations of modified montmorillonite in the composites stated as 1 – 2 % are shown to correspond with composites improved properties as compared to initial polyamide-6. It is explained by increasing crystallinity degree, which resulted from acting of modified montmorillonite particles as nucleation heterogenetic agents.


Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK.

Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films Food Hydrocolloids, 79, 534–543. https://doi.org/10.1016/j.foodhyd.2017.12.013

De León-Almazan, C. M., Estrada-Moreno, I. A., Páramo-García, U., Rivera-Armenta, J. L. (2018). Polyaniline/clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61–67. https://doi.org/10.1016/j.synthmet.2018.01.006

Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered–silicate nanocomposites, Progress in Organic Coatings, 47, 376–383. https://doi.org/10.1016/S0300-9440(03)00130-9

Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435–440 https://doi.org/10.1016/j.polymertesting.2018.03.037

Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137–144. https://doi.org/10.1016/j.compositesa.2017.08.004

Zhong, Y., Zhu, Z., Wang, S. (2005). Synthesis and rheological properties of polystyrene/layered silicate nanocomposites. Polymer, 46, 3006–3013. https://doi.org/10.1016/j.polymer.2005.02.014

Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semi-automated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280–291 https://doi.org/10.1016/j.polymertesting.2018.01.015

Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1–24 https://doi.org/10.1016/j.compositesb.2017.09.066

Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57–64. https://doi.org/10.1016/j.clay.2018.01.001

Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164–171. https://doi.org/10.1016/j.mspro.2012.06.022

Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414–418 https://doi.org/10.1016/j.clay.2010.12.031

Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide / montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, S1496–S1502. https://doi.org/10.1016/j.arabjc.2012.03.010

Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene / polyamide nanocomposites. Appl. Clay Sci., 135, 253–259. https://doi.org/10.1016/j.clay.2016.09.034

Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic–Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391–399. https://doi.org/10.1007/s11671-009-9258-1

Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18–28. https://doi.org/10.1016/j.compscitech.2016.09.023

Wang, Z., Pinnavaia, T. J. (1998). Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820–1826. https://doi.org/10.1021/cm970784o

Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597–1600. https://doi.org/10.1021/cm00057a001

Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-g-MA based inorganic composite materials. J. Mater. Sci., 42, 93–100. https://doi.org/10.1007/s10853-006-1082-8

Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 44, 443–450. https://doi.org/10.1016/S0032-3861(02)00778-4

Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater., 6, 1719–1725. http://dx.doi.org/10.1021/cm00046a026

Rao, Y. Q., Liu, A., O'Connell, K. (2018). Barrier properties and structure of liquid crystalline epoxy and its nanocomposites. Polymer, 142, 109–118. https://doi.org/10.1016/j.polymer.2018.03.027

Uthirakumar, P., Hahn, Y., Nahm, K. (2005). Exfoliated high–impact polystyrene/MMT nanocomposites prepared using anchored cationic radical initiator–MMT hybrid. European Polymer J., 35, 987–995. https://doi.org/10.1016/j.eurpolymj.2005.01.017