THE MECHANISM OF ELECTROOXIDATION OF Mn2+ IONS
DOI:
https://doi.org/10.15421/0817260201Keywords:
quantum modeling method, electrooxidation, aquacomplexes of Mn2 -iones, manganese dioxide.Abstract
In this work the mechanisms of electrooxidation of Mn2+ to MnO2 were investigated in perchlorate, sulphate and acetate solutions. Density functional theory (DFT), as a quantum modeling method, was used for identification of red-ox potentials of one-electron oxidation of the aquacomplexes [Mn2+(H2O)6], [Mn2+(H2O)5(SO42-)]. The calculated values were significantly higher than the measured potentials of the initial stages of complexes oxidation on Pt electrode. The thermodynamical possibilities of formation of oxocomplexes and the kinetic measurements were analyzed. Based on this data it has been found that in perchlorate and sulphate solutions (pH 4) Mn2+-iones were oxidized due to the interaction with adsorbed •OH-radicals, produced by the water-splitting reaction. For strongly acid sulphate solutions (pH 1) it was observed the convergence of values of the potential of water-splitting reaction (1,2 V) and the potential of oxidation of [Mn2+(H2O)5(НSO4-)] complex (1,13V). This points to simultaneous implementation of two reaction paths: the direct electrooxidation of Mn2+-iones and the oxidation due to the interaction with •OH-radicals. The calculated value of potential of electrooxidation of monoacetate aquacomplex of Mn2+-iones is notably low (0,66 V). This poin to the only electrooxidation path of the reaction. The calculated data have been confirmed by the kinetic measurements. The particles [Mn3+(H2O)5(Ас-)] rapidly disproportionate to MnO2 and [Mn2+(H2O)5(Ас-)] due to the features of carboxyl group.
References
Guo, Z. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry / Z. Guo, B. Liu, , Q. Zhang, W. Deng, Y. Wang, Y. Yang // Chem. Soc. Rev. – 2014. – Vol. 43. – P. 3480–3524.
http://doi:10.1039/C3CS60282F
Li, L. A direct glucose alkaline fuel cell using MnO2 carbon nanocomposite supported gold catalyst for anode glucose oxidation. / L. Li, K. E. H. Yu Scott // J. Power Sources. – 2013. – Vol. 221. – P. 1–5.
http://doi:10.1016/j.jpowsour.2012.08.021
Moulav, M.H. Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction /Kale B.B., Bankar D., Amalnerkar D.P., Vinu A., .Kanade K.G // J. Solid State Chem. – 2018. – Vol. 269. – P. 167 – 174.
https://doi.org/10.1016/j.jssc.2018.09.028
Parmeggiani, C. Transition metal based catalysts in the aerobic oxidation of alcohols / С. Parmeggiani, F. Cardona // Green Chem. – 2012. – Vol. 14. – P. 547–564.
http://doi:10.1039/C2GC16344F
Tian, H. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde / H. Tian, J. He, L. Liu, D. Wang, Z. Hao, C. Mac // Microporous Mesoporous Mater. – 2012. – Vol. 151. – P. 397–402.
http://doi:10.1016/j.micromeso.2011.10.003
Wu, J. Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally / J. Wu, H. Yuan, P. Zhang, H. Zhang, Y. Wu // Reac. Kinet. Mech. Cat. – 2016. – Vol. 117. – Р. 319–328.
http://doi:10.1007/s11144-015-0930-4
Ramesha, M. Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5 / M. Ramesha, H. S. Nagarajaa, Rao M. Purnachander, S. Anandanb, N. M. Huangc // Mater. Lett. – 2016. – Vol. 172. – P. 85–89.
http://doi:10.2166/wst.2017.291
Ye, D. A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk / D. Ye, H. Li, G. Liang, J. Luo, X. Zhang, S. Zhang, H. Chen, J. Kong // Electrochim. Acta. – 2013. – Vol. 109. – P. 195–200. http://doi:10.1016/j.electacta.2013.06.119
Wang, P. Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor / P. Wang, S. Sun, S. Wang, Y. Zhang, G. Zhang, Y. Li, S. Li, C. Zhou, S. Fang // J. Appl. Electrochem. – 2017. – Vol. 47(12). – P. 1293–1303.
http://doi:10.1007/s10800-017-1122-x
Majidi, M. R. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell / Farahani F. S., Hosseini M., Ahadzadeh I. // Biolectrochemestry – 2018. – Vol. 125. – P. 38 – 45.
https://doi.org/10.1016/j.bioelechem.2018.09.004
Zhao, Z. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry / Geng C., Yang C., Cui F., Liang Z. // Chemosphere – 2018 – Vol. 209. – P. 173 – 181.
https://doi.org/10.1016/j.chemosphere.2018.06.104
Yanga, Y. J. Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide / Y. J. Yanga, S. Hua // Electrochim Acta. – 2010. – Vol. 55(10). – P. 3471-3476. http://doi:10.1016/j.electacta.2010.01.095
Yang, W. Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes / Chen Q., Song X., Tan H., Liu H. // Ceramics International – 2018 – Vol.44 (12) – P. 13858 – 13866.
https://doi.org/10.1016/j.ceramint.2018.04.232
Rusi. Controllable synthesis of flowerlike α-MnO2 as electrode for pseudocapacitor application / Rusi, S. Majid // Solid State Ionics. - 2014. – Vol. 262. – P. 220-225.
http://doi.org/10.1016/j.ssi.2013.10.003
Brenet, J. P. Electrochemical behavior of metallic oxides / J. P. Brenet // J. Power Sources. – 1979. – Vol. 4. – P. 183–190. https://doi.org/10.1016/0378-7753(79)85009-0
Ryabova, A.S. Rationalizing the influence of the Mn(IV)/Mn(III) Red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction / A. S. Ryabova, F. S. Napolskiy, T. Poux, S. Ya. Istomin, A. Bonnefont, D. Antipin, A. Ye. Baranchikov, E. E. Levin, A.M. Abakumov, G. Kerangueven, E. V. Antipov, G. A. Tsirlina, E. R. Savinova // Electrochim. Acta. – 2016. – Vol. 187. – P. 161–172.
http://doi:10.1016/j.electacta.2015.11.012
Ammam, M. Cyclic Voltammetry Study of the Mn-Substituted Polyoxoanions [MnII4(H2O)2(H4AsW15O56)2]18− and [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17−: Electrodeposition of Manganese Oxides Electrocatalysts for Dioxygen Reduction [Text] / M. Ammam, B. Keita, L. Nadjo, I-M. Mbomekalle, M. D. Ritorto, T. M. Anderson, W. A. Neiwert, C. L. Hill, J. Fransaer // Electroanalysis. – 2011. – Vol. 23(6). – P. 1427–1434.
http://doi:10.1002/elan.201000735
Vetter, K.J. Electrochemistry kinetic / K. J. Vetter. – Academic Press, 1967 – 486 p.
Rogulski, Z. Electrochemical behavior of manganese dioxide on a gold electrode [Text] / Z. Rogulski, H. Siwek, I. Paleska, A. Czerwiński // J. Electroanal. Chem.– 2003. – Vol. 543, Issue 2. – P. 175–185.
http://doi:10.1016/S0022-0728(03)00045-7
Clarke, Colin J. An RDE and RRDE study into the electrodeposition of manganese dioxide / Colin J. Clarke, Gregory J. Browning, Scott Wilfred Donne // Electrochim. Acta. – 2006. – Vol. 51(26). – P. 5773 –5784.
http://doi:10.1016/j.electacta.2006.03.013
Huang, Wenxin. Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor / Wenxin Huang, Jun Li, Yunhe Xu // Materials. – 2017. – Vol. 10(10). – P. 1205. http://doi:10.3390/ma10101205
A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide / Shalini Rodrigues, A. K. Shukla, N. Munichandraiah // J. Appl Electrochem.. – 1998. – Vol. 28, Issue 11. – P. 1235–1241. http://doi: 10.1023/A:1003472901760
Середюк В. А. Оценка надежности квантово-химических рассчетов электронных переходов в аквакомплексах переходных металлов / В. А. Середюк, В. Ф. Варгалюк // Электрохимия. – 2008. – Т.44, № 10. – С. 1190–1197.
Davies, Geoffrey. Some aspects of the chemistry of manganese(III) in aqueous solution / Geoffrey Davies // Coord. Chem. Rev.– 1969. – Vol. 4, Issue 2. – P. 199–224.
http://doi:10.1016/S0010-8545(00)80086-7
Galus, Z. Fundamentals of Electrochemical Analysis / Z. Galus. - New York: Halsted Press., 1976 – 552p.
References
Guo, Z., Liu, B., Zhang, Q. et. al. (2014). Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev., 43, 3480 – 3524. http://doi:10.1039/C3CS60282F
Li, L., Scott, K., Yu, E. H. (2013). A direct glucose alkaline fuel cell using MnO2 carbon nanocomposite supported gold catalyst for anode glucose oxidation. J. Power Sources., 221, 1–5.
http://doi:10.1016/j.jpowsour.2012.08.021
Moulav, M.H., Kale, B.B.,Bankar, D.,Amalnerkar, D.P., Vinu, A., .Kanade, K.G (2018). Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction. J. Solid State Chem., 269, 167 – 174. https://doi.org/10.1016/j.jssc.2018.09.028
Parmeggiani, C., Cardona, F. (2012). Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem., 14, 547–564. http://doi:10.1039/C2GC16344F
Tian, H., He, J., Liu, L. et. al. (2012). Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous and Mesoporous Mater., 151, 397–402.
http://doi:10.1016/j.micromeso.2011.10.003
Wu, J., Yuan, H., Zhang et. al. (2016). Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally. Reac. Kinet. Mech. Cat., 117, 319–328.
http://doi:10.1007/s11144-015-0930-4
Ramesha, M., Nagarajaa, H.S., Purnachander, Rao, M. et. al. (2016). Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett., 172, 85–89.
http://doi:10.2166/wst.2017.291
Ye, D., Li, H., Liang, G. et. al. (2013). A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk. Electrochim. Acta, 109, 195–200. http://doi:10.1016/j.electacta.2013.06.119
Wang, P., Sun, S., Wang, S. et. al. (2017). Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor. J. Appl. Electrochem., 47(12), 1293–1303. http://doi:10.1007/s10800-017-1122-x
Majidi, M. R., Farahani, F. S., Hosseini, M., Ahadzadeh, I. (2018). Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Biolectrochemestry, 125, 38 – 45. https://doi.org/10.1016/j.bioelechem.2018.09.004
Zhao, Z., Geng, C., Yang, C., Cui, F., Liang, Z. (2018). A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere, 209, 173 – 181. https://doi.org/10.1016/j.chemosphere.2018.06.104
Yanga, Y.J., Hua, S. (2010). Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim Acta, 55(10), 3471–3476.
http://doi:10.1016/j.electacta.2010.01.095
Yang, W., Chen, Q., Song, X., Tan, H., Liu, H. (2018). Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes. Ceramics International, 44(12), 13858 – 13866. https://doi.org/10.1016/j.ceramint.2018.04.232
Rusi, Majid S. (2014). Controllable synthesis of flowerlike α-MnO2 as electrode for pseudocapacitor application. Solid State Ionics., 262, 220-225. http://doi.org/10.1016/j.ssi.2013.10.003
. Brenet, J.P. (1979). Electrochemical behavior of metallic oxides. J. Power Sources, 4, 183–190. https://doi.org/10.1016/0378-7753(79)85009-0
Ryabova, A.S., Napolskiy, F.S., Poux, T. et. al. (2016). Rationalizing the influence of the Mn(IV)/Mn(III) Red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim Acta, 187, 161–172.
http://doi:10.1016/j.electacta.2015.11.012
Ammam, M. , Keita, B., Nadjo, L. et. al. (2011). Cyclic Voltammetry Study of the Mn-Substituted Polyoxoanions [MnII4(H2O)2(H4AsW15O56)2]18− and [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17−: Electrodeposition of Manganese Oxides Electrocatalysts for Dioxygen Reduction. Electroanalysis, 23(6), 1427–1434.
http://doi: 10.1002/elan.201000735
Vetter, K.J. (1967). Electrochemistry kinetic. Academic Press, 486.
Rogulski, Z. Siwek, H., Paleska, I., Czerwiński A. (2003). Electrochemical behavior of manganese dioxide on a gold electrode. J. Electroanal. Chem.–, 543(2), 175–185. http://doi:10.1016/S0022-0728(03)00045-7
Clarke, Colin J., Browning, Gregory J., Donne, Scott Wilfred. (2006). An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochim. Acta, 51(26), 5773 –5784.
http://doi:10.1016/j.electacta.2006.03.013
Huang, Wenxin, Li, Jun, Xu, Yunhe. (2017). Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor. Materials, 10(10), 1205.
http://doi:10.3390/ma10101205
Rodrigues, Shalini, Shukla, A. K., Munichandraiah, N. (1998). A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide. J. Appl Electrochem., 28(11), 1235–1241.
http://doi: 10.1023/A:1003472901760
Seredyuk V. A., Vargalyuk V. F. (2008). Otsenka nadezhnosti kvantovo-himicheskih raschetov elektronnyih perehodov v akvakompleksah perehodnyih metallov. Elektrohimiya, 44(10), 1190–1197
Davies, Geoffrey. (1969). Some aspects of the chemistry of manganese(III) in aqueous solution. Coord. Chem. Rev, 4(2), 199–224.
http://doi:10.1016/S0010-8545(00)80086-7
Galus, Z. (1976) Fundamentals of Electrochemical Analysis. Ellis Horwood, Chichester. New York: Halsted Press., 552.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Дніпровський національний університет імені Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).