THE MECHANISM OF ELECTROOXIDATION OF Mn2+ IONS

Authors

DOI:

https://doi.org/10.15421/0817260201

Keywords:

quantum modeling method, electrooxidation, aquacomplexes of Mn2 -iones, manganese dioxide.

Abstract

In this work the mechanisms of electrooxidation of Mn2+ to MnO2 were investigated in perchlorate, sulphate and acetate solutions. Density functional theory (DFT), as a quantum modeling method, was used for identification of red-ox potentials of one-electron oxidation of the aquacomplexes [Mn2+(H2O)6], [Mn2+(H2O)5(SO42-)]. The calculated values were significantly higher than the measured potentials of the initial stages of complexes oxidation on Pt electrode. The thermodynamical possibilities of formation of oxocomplexes and the kinetic measurements were analyzed. Based on this data it has been found that in perchlorate and sulphate solutions (pH 4) Mn2+-iones were oxidized due to the interaction with adsorbed •OH-radicals, produced by the water-splitting reaction. For strongly acid sulphate solutions (pH 1) it was observed the convergence of values of the potential of water-splitting reaction (1,2 V) and the potential of oxidation of [Mn2+(H2O)5(НSO4-)] complex (1,13V). This points to simultaneous implementation of two reaction paths: the direct electrooxidation of Mn2+-iones and the oxidation due to the interaction with •OH-radicals. The calculated value of potential of electrooxidation of monoacetate aquacomplex of Mn2+-iones is notably low (0,66 V). This poin to the only electrooxidation path of the reaction. The calculated data have been confirmed by the kinetic measurements. The particles [Mn3+(H2O)5(Ас-)] rapidly disproportionate to MnO2 and [Mn2+(H2O)5(Ас-)] due to the features of carboxyl group.

 

References

Guo, Z. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry / Z. Guo, B. Liu, , Q. Zhang, W. Deng, Y. Wang, Y. Yang // Chem. Soc. Rev. – 2014. – Vol. 43. – P. 3480–3524.

http://doi:10.1039/C3CS60282F

Li, L. A direct glucose alkaline fuel cell using MnO2 carbon nanocomposite supported gold catalyst for anode glucose oxidation. / L. Li, K. E. H. Yu Scott // J. Power Sources. – 2013. – Vol. 221. – P. 1–5.

http://doi:10.1016/j.jpowsour.2012.08.021

Moulav, M.H. Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction /Kale B.B., Bankar D., Amalnerkar D.P., Vinu A., .Kanade K.G // J. Solid State Chem. – 2018. – Vol. 269. – P. 167 – 174.

https://doi.org/10.1016/j.jssc.2018.09.028

Parmeggiani, C. Transition metal based catalysts in the aerobic oxidation of alcohols / С. Parmeggiani, F. Cardona // Green Chem. – 2012. – Vol. 14. – P. 547–564.

http://doi:10.1039/C2GC16344F

Tian, H. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde / H. Tian, J. He, L. Liu, D. Wang, Z. Hao, C. Mac // Microporous Mesoporous Mater. – 2012. – Vol. 151. – P. 397–402.

http://doi:10.1016/j.micromeso.2011.10.003

Wu, J. Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally / J. Wu, H. Yuan, P. Zhang, H. Zhang, Y. Wu // Reac. Kinet. Mech. Cat. – 2016. – Vol. 117. – Р. 319–328.

http://doi:10.1007/s11144-015-0930-4

Ramesha, M. Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5 / M. Ramesha, H. S. Nagarajaa, Rao M. Purnachander, S. Anandanb, N. M. Huangc // Mater. Lett. – 2016. – Vol. 172. – P. 85–89.

http://doi:10.2166/wst.2017.291

Ye, D. A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk / D. Ye, H. Li, G. Liang, J. Luo, X. Zhang, S. Zhang, H. Chen, J. Kong // Electrochim. Acta. – 2013. – Vol. 109. – P. 195–200. http://doi:10.1016/j.electacta.2013.06.119

Wang, P. Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor / P. Wang, S. Sun, S. Wang, Y. Zhang, G. Zhang, Y. Li, S. Li, C. Zhou, S. Fang // J. Appl. Electrochem. – 2017. – Vol. 47(12). – P. 1293–1303.

http://doi:10.1007/s10800-017-1122-x

Majidi, M. R. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell / Farahani F. S., Hosseini M., Ahadzadeh I. // Biolectrochemestry – 2018. – Vol. 125. – P. 38 – 45.

https://doi.org/10.1016/j.bioelechem.2018.09.004

Zhao, Z. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry / Geng C., Yang C., Cui F., Liang Z. // Chemosphere – 2018 – Vol. 209. – P. 173 – 181.

https://doi.org/10.1016/j.chemosphere.2018.06.104

Yanga, Y. J. Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide / Y. J. Yanga, S. Hua // Electrochim Acta. – 2010. – Vol. 55(10). – P. 3471-3476. http://doi:10.1016/j.electacta.2010.01.095

Yang, W. Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes / Chen Q., Song X., Tan H., Liu H. // Ceramics International – 2018 – Vol.44 (12) – P. 13858 – 13866.

https://doi.org/10.1016/j.ceramint.2018.04.232

Rusi. Controllable synthesis of flowerlike α-MnO2 as electrode for pseudocapacitor application / Rusi, S. Majid // Solid State Ionics. - 2014. – Vol. 262. – P. 220-225.

http://doi.org/10.1016/j.ssi.2013.10.003

Brenet, J. P. Electrochemical behavior of metallic oxides / J. P. Brenet // J. Power Sources. – 1979. – Vol. 4. – P. 183–190. https://doi.org/10.1016/0378-7753(79)85009-0

Ryabova, A.S. Rationalizing the influence of the Mn(IV)/Mn(III) Red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction / A. S. Ryabova, F. S. Napolskiy, T. Poux, S. Ya. Istomin, A. Bonnefont, D. Antipin, A. Ye. Baranchikov, E. E. Levin, A.M. Abakumov, G. Kerangueven, E. V. Antipov, G. A. Tsirlina, E. R. Savinova // Electrochim. Acta. – 2016. – Vol. 187. – P. 161–172.

http://doi:10.1016/j.electacta.2015.11.012

Ammam, M. Cyclic Voltammetry Study of the Mn-Substituted Polyoxoanions [MnII4(H2O)2(H4AsW15O56)2]18− and [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17−: Electrodeposition of Manganese Oxides Electrocatalysts for Dioxygen Reduction [Text] / M. Ammam, B. Keita, L. Nadjo, I-M. Mbomekalle, M. D. Ritorto, T. M. Anderson, W. A. Neiwert, C. L. Hill, J. Fransaer // Electroanalysis. – 2011. – Vol. 23(6). – P. 1427–1434.

http://doi:10.1002/elan.201000735

Vetter, K.J. Electrochemistry kinetic / K. J. Vetter. – Academic Press, 1967 – 486 p.

Rogulski, Z. Electrochemical behavior of manganese dioxide on a gold electrode [Text] / Z. Rogulski, H. Siwek, I. Paleska, A. Czerwiński // J. Electroanal. Chem.– 2003. – Vol. 543, Issue 2. – P. 175–185.

http://doi:10.1016/S0022-0728(03)00045-7

Clarke, Colin J. An RDE and RRDE study into the electrodeposition of manganese dioxide / Colin J. Clarke, Gregory J. Browning, Scott Wilfred Donne // Electrochim. Acta. – 2006. – Vol. 51(26). – P. 5773 –5784.

http://doi:10.1016/j.electacta.2006.03.013

Huang, Wenxin. Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor / Wenxin Huang, Jun Li, Yunhe Xu // Materials. – 2017. – Vol. 10(10). – P. 1205. http://doi:10.3390/ma10101205

A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide / Shalini Rodrigues, A. K. Shukla, N. Munichandraiah // J. Appl Electrochem.. – 1998. – Vol. 28, Issue 11. – P. 1235–1241. http://doi: 10.1023/A:1003472901760

Середюк В. А. Оценка надежности квантово-химических рассчетов электронных переходов в аквакомплексах переходных металлов / В. А. Середюк, В. Ф. Варгалюк // Электрохимия. – 2008. – Т.44, № 10. – С. 1190–1197.

Davies, Geoffrey. Some aspects of the chemistry of manganese(III) in aqueous solution / Geoffrey Davies // Coord. Chem. Rev.– 1969. – Vol. 4, Issue 2. – P. 199–224.

http://doi:10.1016/S0010-8545(00)80086-7

Galus, Z. Fundamentals of Electrochemical Analysis / Z. Galus. - New York: Halsted Press., 1976 – 552p.

References

Guo, Z., Liu, B., Zhang, Q. et. al. (2014). Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev., 43, 3480 – 3524. http://doi:10.1039/C3CS60282F

Li, L., Scott, K., Yu, E. H. (2013). A direct glucose alkaline fuel cell using MnO2 carbon nanocomposite supported gold catalyst for anode glucose oxidation. J. Power Sources., 221, 1–5.

http://doi:10.1016/j.jpowsour.2012.08.021

Moulav, M.H., Kale, B.B.,Bankar, D.,Amalnerkar, D.P., Vinu, A., .Kanade, K.G (2018). Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction. J. Solid State Chem., 269, 167 – 174. https://doi.org/10.1016/j.jssc.2018.09.028

Parmeggiani, C., Cardona, F. (2012). Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem., 14, 547–564. http://doi:10.1039/C2GC16344F

Tian, H., He, J., Liu, L. et. al. (2012). Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous and Mesoporous Mater., 151, 397–402.

http://doi:10.1016/j.micromeso.2011.10.003

Wu, J., Yuan, H., Zhang et. al. (2016). Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally. Reac. Kinet. Mech. Cat., 117, 319–328.

http://doi:10.1007/s11144-015-0930-4

Ramesha, M., Nagarajaa, H.S., Purnachander, Rao, M. et. al. (2016). Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett., 172, 85–89.

http://doi:10.2166/wst.2017.291

Ye, D., Li, H., Liang, G. et. al. (2013). A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk. Electrochim. Acta, 109, 195–200. http://doi:10.1016/j.electacta.2013.06.119

Wang, P., Sun, S., Wang, S. et. al. (2017). Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor. J. Appl. Electrochem., 47(12), 1293–1303. http://doi:10.1007/s10800-017-1122-x

Majidi, M. R., Farahani, F. S., Hosseini, M., Ahadzadeh, I. (2018). Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Biolectrochemestry, 125, 38 – 45. https://doi.org/10.1016/j.bioelechem.2018.09.004

Zhao, Z., Geng, C., Yang, C., Cui, F., Liang, Z. (2018). A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere, 209, 173 – 181. https://doi.org/10.1016/j.chemosphere.2018.06.104

Yanga, Y.J., Hua, S. (2010). Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim Acta, 55(10), 3471–3476.

http://doi:10.1016/j.electacta.2010.01.095

Yang, W., Chen, Q., Song, X., Tan, H., Liu, H. (2018). Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes. Ceramics International, 44(12), 13858 – 13866. https://doi.org/10.1016/j.ceramint.2018.04.232

Rusi, Majid S. (2014). Controllable synthesis of flowerlike α-MnO2 as electrode for pseudocapacitor application. Solid State Ionics., 262, 220-225. http://doi.org/10.1016/j.ssi.2013.10.003

. Brenet, J.P. (1979). Electrochemical behavior of metallic oxides. J. Power Sources, 4, 183–190. https://doi.org/10.1016/0378-7753(79)85009-0

Ryabova, A.S., Napolskiy, F.S., Poux, T. et. al. (2016). Rationalizing the influence of the Mn(IV)/Mn(III) Red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim Acta, 187, 161–172.

http://doi:10.1016/j.electacta.2015.11.012

Ammam, M. , Keita, B., Nadjo, L. et. al. (2011). Cyclic Voltammetry Study of the Mn-Substituted Polyoxoanions [MnII4(H2O)2(H4AsW15O56)2]18− and [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17−: Electrodeposition of Manganese Oxides Electrocatalysts for Dioxygen Reduction. Electroanalysis, 23(6), 1427–1434.

http://doi: 10.1002/elan.201000735

Vetter, K.J. (1967). Electrochemistry kinetic. Academic Press, 486.

Rogulski, Z. Siwek, H., Paleska, I., Czerwiński A. (2003). Electrochemical behavior of manganese dioxide on a gold electrode. J. Electroanal. Chem.–, 543(2), 175–185. http://doi:10.1016/S0022-0728(03)00045-7

Clarke, Colin J., Browning, Gregory J., Donne, Scott Wilfred. (2006). An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochim. Acta, 51(26), 5773 –5784.

http://doi:10.1016/j.electacta.2006.03.013

Huang, Wenxin, Li, Jun, Xu, Yunhe. (2017). Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor. Materials, 10(10), 1205.

http://doi:10.3390/ma10101205

Rodrigues, Shalini, Shukla, A. K., Munichandraiah, N. (1998). A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide. J. Appl Electrochem., 28(11), 1235–1241.

http://doi: 10.1023/A:1003472901760

Seredyuk V. A., Vargalyuk V. F. (2008). Otsenka nadezhnosti kvantovo-himicheskih raschetov elektronnyih perehodov v akvakompleksah perehodnyih metallov. Elektrohimiya, 44(10), 1190–1197

Davies, Geoffrey. (1969). Some aspects of the chemistry of manganese(III) in aqueous solution. Coord. Chem. Rev, 4(2), 199–224.

http://doi:10.1016/S0010-8545(00)80086-7

Galus, Z. (1976) Fundamentals of Electrochemical Analysis. Ellis Horwood, Chichester. New York: Halsted Press., 552.

Published

2019-01-05