DOI: https://doi.org/10.15421/0817260202

THE QUANTUM-CHEMICAL INVESTIGATION OF HETEROCYCLIZATION MECHANISM FOR OLIGOMERIC PRODUCT OF EPICHLOROHYDRIN AMINOLYSIS: EPOXIDE OR THE DIOXANE?

Andrey V. Tokar, Halyna О. Petrushyna

Abstract


The alternative pathways of intramolecular cyclization for oligomeric product of epichlorohydrin aminolysis by dimethylamine have been investigated at ab initio level of theory. The localized transition states geometry indicates a concerted mechanism of nucleophilic substitution, regardless of the process direction. By comparative analysis of activation parameters, which obtained in vacuo as well as in acetonitrile solution with the trace quantities of water as an «active» solvation partner of reaction, a great prevalence for the epoxide ring closure has shown relatively to the p-dioxane fragment formation. The similar energetic characteristics were also obtained in the case of complete replacement of acetonitrile with water, which indicates a steady reproduction of the values of activation barriers within the chosen theoretical approximation. In this way, the results of calculations confirm a decisive role of the polarizable effects of the medium in ensuring an appropriate level of regioselectivity and are in good agreement with the data for related processes obtained earlier.

Keywords


ab initio calculation; transition state; activation parameter; hydrogen bonding; solvation effect

References


Бібліографічні посилання

DOWTM Epichlorohydrin Product stewardship manual: Safe handling and storage. – USA: The Dow Chemical Company, 2007. – 47 p.

Bhattacharya, A. Polymer grafting and crosslinking / A. Bhattacharya, J. W. Rawlins, P. Ray. – Hoboken: John Wiley & Sons Inc., 2009. – P. 183.

Guo, B. Preparation of Flexible, Highly Transparent, Cross-Linked Cellulose Thin Film with High Mechanical Strength and Low Coefficient of Thermal Expansion / B. Guo, W. Chen, L. Yan // ACS Sustainable Chem. Eng. – 2013. – Vol. 1, N 11. – P. 1474–1479. Way of Access: https://doi.org/10.1021/sc400252e

Sengel, S. B. Halloysite-carboxymethyl cellulose cryogel composite from natural sources / S. B. Sengel, M. Sahiner, N. Aktas, N. Sahiner // Appl. Clay Sci. – 2017. – Vol. 140. – P. 66–74. Way of Access:

https://doi.org/10.1016/j.clay.2017.01.031

Liu, S. Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and -cyclodextrin / S. Liu, W. Luo, H. Huang // Int. J. Biol. Macromol. – 2016. – Vol. 89. – P. 527–534. Way of Access: https://doi.org/10.1016/j.ijbiomac.2016.05.023

Udoetok, I. A. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution / I. A. Udoetok, R. M. Dimmick, L. D. Wilson, J. V. Headley // Carbohydr. Polym. – 2016. – Vol. 136. – P. 329–340. Way of Access:

https://doi.org/10.1016/j.carbpol.2015.09.032

Hadidi, M. Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions / M. Hadidi, A. L. Zydney // J. Membr. Sci. – 2014. – Vol. 452. – P. 97–103. Way of Access:

https://doi.org/10.1016/j.memsci.2013.09.062

Thanh, N. D. Some Derivatives of Cellulose with Diethanolamine and Ethylenediamine / N. D. Thanh, D. T. Tuyen // 13th International Electronic Conference on Synthetic Organic Chemistry (ECSOC–13), 1–30 November 2009: abstr. – f002.

Li, Y.-W. A facile synthesis of the oxazolidinone antibacterial agent linezolid / Y.-W. Li, Y. Liu, Y.-C. Jia, J.-Y. Yuan // Chin. Chem. Lett. – 2013. – Vol. 24, N 3. – P. 230–232. Way of Access:

https://doi.org/10.1016/j.cclet.2013.01.039

Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization / S. P. Akhlaghi [et al.] // Carbohydr. Res. – 2015. – Vol. 409. – P. 48–55. Way of Access: https://doi.org/10.1016/j.carres.2015.03.009

Arbenz, A. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures / A. Arbenz, L. Avérous // Green Chem. – 2015. – Vol. 17, N 5. – P. 2626–2646. Way of Access:

http://dx.doi.org/10.1039/C5GC00282F

Токарь, А. В. Квантово-химическое исследование механизма реакции эпихлоргидрина с триметиламином в газовой фазе / А. В. Токарь, В. П. Ренге, А. А. Артемошина, С. И. Оковитый // Вісн. Дніпропетр. ун-ту. Сер. Хім. – 2012. – Т. 20, N 18. – С. 78–82.

Merrill, G. N. The gas-phase reactivity of epichlorohydrin with hydroxide / G. N. Merrill // J. Phys. Org. Chem. – 2004. – Vol. 17, N 3. – P. 241–248. Way of Access: https://doi.org/10.1002/poc.722

Merrill, G. N. A computational study into the reactivity of epichlorohydrin and epibromohydrin under basic conditions in the gas phase and solution / G. N. Merrill // J. Phys. Org. Chem. – 2007. – Vol. 20, N 1. – P. 19–29. Way of Access: https://doi.org/10.1002/poc.1119

Shields, E. S. A computational study into the reactivity of epichlorohydrin and epibromohydrin under acidic conditions in the gas phase and aqueous solution / E. S. Shields, G. N. Merrill // J. Phys. Org. Chem. – 2007. – Vol. 20, N 12. – P. 1058–1071. Way of Access:

https://doi.org/10.1002/poc.1255

Concellon, J. M. Nucleophilic ring closure and opening of aminoiodohydrins / J. M. Concellon, P. L. Bernad, J. A. Perez-Andres // Tetrahedron Lett. – 2000. – Vol. 41, N 8. – P. 1231–1234. Way of Access:

https://doi.org/10.1016/S0040-4039(99)02250-9

Jeziorna, A. Synthesis of polyfunctional phosphorodithioates and structural analogues mediated by azetidinium ions and epoxides / A. Jeziorna, J. Helinski, B. Krawiecka // Tetrahedron Lett. – 2003. – Vol. 44, N 16. – P. 3239–3243. Way of Access : https://doi.org/10.1016/S0040-4039(03)00638-5

Couty, F. Azetidines: New Tools for the Synthesis of Nitrogen Heterocycles / F. Couty, G. Evano // Synlett. – 2009. – N 19. – P. 3053–3064. Way of Access : https://doi.org/10.1055/s-0029-1218299

Токарь, А. В. Теоретическое изучение влияния сольватационных эффектов среды на механизм гетероциклизации N,N-диалкиламинохлоргидринов / А. В. Токарь // Вопр. химии и хим. технологии. – 2013. – N 2. – С. 9–11.

Tokar, A. V. The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products / A. V. Tokar // Visn. Dnipropetr. Univ.: Khim. – 2014. – Vol. 22, N 2. – P. 27–30. Way of Access : https://doi.org/10.15421/081418

Цирельсон, В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела / В. Г. Цирельсон. – М. : Лаборатория знаний, 2017. – 522 с.

Merrick, J. P. An Evaluation of Harmonic Vibrational Frequency Scale Factors / J. P. Merrick, D. Moran, L. Radom // J. Phys. Chem. A. – 2007. – Vol. 111, N 45. – P. 11683–11700. Way of Access:

https://doi.org/10.1021/jp073974n

Gaussian 09, Revision A.02 / M. J. Frisch [et al.]. – Gaussian, Inc.: Wallingford CT, 2016.

Бутырская, Е. В. Компьютерная химия: основы теории и работа с программами Gaussian и GaussView / Е. В. Бутырская. – М. : СОЛОН-ПРЕСС, 2011. – 224 с.

Хёльтье, Х.-Д. Молекулярное моделирование: теория и практика / Х.-Д. Хёльтье, В. Зиппль, Д. Роньян, Г. Фолькерс. – М. : БИНОМ. Лаборатория знаний, 2013. – 319 с.

References

The Dow Chemical Company (2007). DOW™ Epichlorohydrin Product Stewardship Manual: Safe Handling and Storage.

Bhattacharya, A., Rawlins, J. W., & Ray, P. (2009). Polymer grafting and crosslinking. Hoboken, USA: John Wiley & Sons Inc.

Guo, B., Chen, W., & Yan, L. (2013). Preparation of Flexible, Highly Transparent, Cross-Linked Cellulose Thin Film with High Mechanical Strength and Low Coefficient of Thermal Expansion. ACS Sustainable Chem. Eng., 1(11), 1474–1479. doi: 10.1021/sc400252e

Sengel, S. B., Sahiner, M., Aktas, N., & Sahiner, N. (2017). Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Appl. Clay Sci., 140, 66–74.

doi: 10.1016/j.clay.2017.01.031

Liu, S., Luo, W., & Huang, H. (2016). Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and -cyclodextrin. Int. J. Biol. Macromol., 89, 527–534. doi: 10.1016/j.ijbiomac.2016.05.023

Udoetok, I. A., Dimmick, R. M., Wilson, L. D., & Headley, J. V. (2016). Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr. Polym., 136, 329–340.

doi: 10.1016/j.carbpol.2015.09.032

Hadidi, M., & Zydney, A. L. (2014). Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. J. Membr. Sci., 452, 97–103. doi: 10.1016/j.memsci.2013.09.062

Thanh, N. D., & Tuyen, D. T. (2009). Some Derivatives of Cellulose with Diethanolamine and Ethylenediamine. 13th International Electronic Conference on Synthetic Organic Chemistry (ECSOC–13).

Li, Y.-W., Liu, Y., Jia, Y.-C., & Yuan, J.-Y. (2013). A facile synthesis of the oxazolidinone antibacterial agent linezolid. Chin. Chem. Lett., 24(3), 230–232.

doi: 10.1016/j.cclet.2013.01.039

Akhlaghi, S. P., Zaman, M., Mohammed, N., Brinatti, C., Batmaz, R., Berry, R., Loh, W., & Tam, R. C. (2015). Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization. Carbohydr. Res., 409, 48–55. doi: 10.1016/j.carres.2015.03.009

Arbenz, A., & Avérous, L. (2015). Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem., 17(5), 2626–2646.

doi: 10.1039/C5GC00282F

Tokar, A. V., Renge, V. P., Artemoshyna, A. A., & Okovytyy, S. I. (2012). [The quantum-chemical investigation of epichlorohydrin-trimethylamine reaction mechanism in vacuo]. Visn. Dnipropetr. Univ.: Khim. – Bull. Dnipropetr. Univ.: Chem., 20(18), 78–82 (in Russian).

Merrill, G. N. (2004). The gas-phase reactivity of epichlorohydrin with hydroxide. J. Phys. Org. Chem., 17(3), 241–248. doi: 10.1002/poc.722

Merrill, G. N. (2007). A computational study into the reactivity of epichlorohydrin and epibromohydrin under basic conditions in the gas phase and solution. J. Phys. Org. Chem., 20(1), 19–29. doi: 10.1002/poc.1119

Shields, E. S., & Merrill, G. N. (2007). A computational study into the reactivity of epichlorohydrin and epibromohydrin under acidic conditions in the gas phase and aqueous solution. J. Phys. Org. Chem., 20(12), 1058–1071. doi: 10.1002/poc.1255

Concellon, J. M., Bernad, P. L., & Perez-Andres, J. A. (2000). Nucleophilic ring closure and opening of aminoiodohydrins. Tetrahedron Lett., 41(8), 1231–1234. doi: 10.1016/S0040-4039(99)02250-9

Jeziorna, A., Helinski, J., & Krawiecka, B. (2003). Synthesis of polyfunctional phosphorodithioates and structural analogues mediated by azetidinium ions and epoxides. Tetrahedron Lett., 44(16), 3239–3243.

doi: 10.1016/S0040-4039(03)00638-5

Couty, F., & Evano, G. (2009). Azetidines: New Tools for the Synthesis of Nitrogen Heterocycles. Synlett., (19), 3053–3064. doi: 10.1055/s-0029-1218299

Tokar, A. V. (2013). [The theoretical investigation of the medium solvation effects in heterocyclization mechanism of N,N-dialkylaminochlorohydrins]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (2), 9–11 (in Russian).

Tokar, A. V. (2014). The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products. Visn. Dnipropetr. Univ.: Khim. – Bull. Dnipropetr. Univ.: Chem., 22(2), 27–30.

doi: 10.15421/081418

Tsirelson, V. G. (2017). [The quantum chemistry. Molecules, molecular systems and solids]. Moscow, Russian Federation: Laboratory of Knowledge (in Russian).

Merrick, J. P., Moran, D., & Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A., 111(45), 11683–11700.

doi: 10.1021/jp073974n

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 09 (Revision A.02) [Computer software]. Gaussian Inc., Wallingford CT.

Butyirskaya, E. V. (2011). [Computational chemistry: bases of theory and work with the programs of Gaussian and GaussView]. Moscow, Russian Federation: SOLON-PRESS (in Russian).

Holtje, H.-D., Sippl, W., Rognan, D., & Folkers, G. (2013). [Molecular Modeling. Basic Principles and Applications]. Moscow, Russian Federation: BINOM. Laboratory of Knowledge (in Russian).


Comments on this article

View all comments




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

______________________________________________________
Journal of Chemistry and Technologies
eISSN: 2663-2942 | pISSN: 2663-2934
Address of founder:chem.dnu@gmail.com
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University