INTERACTION OF THE LANTHANA, YTTRIA WITH SAMARIA AT TEMPERATURE 1500 °C

Authors

  • Olga. V. Chudinovych Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, Ukraine
  • Elena R. Andrievskaya
  • Janna D. Bogatyryova Physics and technology Institute for metals and alloys, Ukraine
  • Oleksandr I. Bukov Інститут проблем матеріалознавства ім. І.М. Францевича НАН України, Ukraine

DOI:

https://doi.org/10.15421/0817260203

Keywords:

lanthana, yttria, samaria, phase equilibria, isothermal section, solid solutions, lattice parameters of the unit cells, functional and structural ceramics

Abstract

Using the methods of physicochemical analysis (XRD, petrography, SEM, X–ray microprobe analysis) phase equilibria were firstly investigated in the ternary system La2O3–Y2O3–Sm2O3 at 1500 °C.The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100 аnd 1500 °C. The XRD used the powder method of sampling at room temperature (CuКa irradiation). The crystal-optic characteristics of the obtained phases were determined under polarized microscope “МІН-8”. The refraction indexes were measured in immersion liquids (solution of arsenic tribromide in methylene iodide or alloys of sulfur with selenium) with accuracy ± 0.02. The solid solutions based on various polymorphous forms of constituent phases and ordered phase with a structure of the perovskite-type of LaYO3 were revealed in the system. The boundaries of mutual solubility and concentration dependences the lattice parameters for all phases have been determined. The isothermal sections of the phase diagrams for the La2O3–Y2O3–Sm2O3 systems at 1500 °C are characterized by the presence of one three-phase (B + C + R), four single-phase (A-La2O3 (Sm2O3), B-La2O3 (Sm2O3), R, C-Y2O3) and two-phase (A + B, B + R, C + R, B + C) regions.

Author Biography

Olga. V. Chudinovych, Інститут проблем матеріалознавства ім. І.М. Францевича НАН України

науковий співробітник

References

Бібліографічні посилання

Wang S. F. Transparent ceramics: Processing, materials and applications / S. F. Wang, J. Zhang, D. W. Luo [et al.] // Progress in Solid State Chem. – 2013. – Vol. 41. – P. 20–54. http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002.

Liu Zehua. Composite ceramic with high saturation input powder in solid-state laser lighting: Microstructure, properties, and luminous emittances / Zehua Liu, Shuxing Li, Yihua Huang [et al.] // Ceramics International. – 2018. – Vol. 44, Iss. 16 – P. 20232–20238.

https://doi.org/10.1016/j.ceramint.2018.08.008

Krystal Ivy. Direct ink write fabrication of transparent ceramic gain media / Ivy Krystal, Jones Zachary, M. Seeley Nerine [et al.] // Optical Materials. – 2018. – Vol. 75. – P. 19–25.

https://doi.org/10.1016/j.optmat.2017.10.005

Liangkai Liu. Fabrication of fine-grained undoped Y2O3 transparent ceramic using nitrate pyrogenation synthesized nanopowders / Liangkai Liu, Qihua Zhu, Qiangqiang Zhu [et al.] // Ceramics International Available online 1 December 2018.

https://doi.org/10.1016/j.ceramint.2018.11.232

Prasad Narasimha S. Development of ceramic solid-state laser host materials / Narasimha S. Prasad, Sudhir Trivedi, Susan Kutcher [et al.] // Narasimha.s. prasad@nasa.gov.

Chen By Shi. New opportunities for transparent ceramics / By Shi Chen, Yiquan Wu // Amer. Ceram. Soc. Bull. – 2013. – No. 2. – P. 32–37.

Takumi Kato. Comparative study of dosimeter properties between Al2O3 transparent ceramic and single crystal / Kato Takumi, Kawano Naoki, Okada Go, [et. al] / Radiation Measurements. – 2017. – Vol. 107. – P. 43–47.

https://doi.org/10.1016/j.radmeas.2017.09.006

Qiang Zeng. Fabrication and luminescence properties of U:YAG transparent ceramic / Zeng Qiang, Zhang Qinghua, Qi Jianqi [et al] // Optical Materials. – 2018. – Vol. 82, Iss. 15. – P. 56–59.

https://doi.org/10.1016/j.optmat.2018.05.004

Gülsüm Topateş. Chemical durability of zircon containing glass-ceramic glazes / Topateş Gülsüm, Tarhan Baran, Tarhan Müge // Ceramics International. – 2017. – Vol. 43, Iss. 15. – P. 12333–12337.

https://doi.org/10.1016/j.ceramint.2017.06.097

Benitez Tobias. Transparent ceramic and glass-ceramic materials for armor applications / Tobias Benitez, Sergio Y. Gómez, Antonio Pedro [et al.] // Ceramics International. – 2017. – Vol. 43, Iss. 16. – P. 13031–13046.

https://doi.org/10.1016/j.ceramint.2017.07.205

Zhang Yumin, Jung In-Ho. Critical evaluation of thermodynamic properties of rare earth sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) / Yumin Zhang, In-Ho Jung // Calphad. – 2017. – Vol. 58. – P. 169–203.

https://doi.org/10.1016/j.calphad.2017.07.001

Navrotsky Alexandra. Thermodynamics of solid phases containing rare earth oxides / Alexandra Navrotsky, Wingyee Lee, Aleksandra Mielewczyk-Gryn [et al.] // The Journal of Chemical Thermodynamics. – 2015. – Vol. 88. – P. 126–141.

https://doi.org/10.1016/j.jct.2015.04.008

Yoshimura M. Various solid solutions in the systems Y2O3–R2O3 (R – La, Nd, and Sm) at high temperature / M. Yoshimura, X.–Z. Rong // J. Mater. Sci. Lett. – 1997. – Vol. 16. – P. 1961–1963.

http://dx.doi.org/10.1023/A:1018559322304.

Pejchal Jan. Luminescence and scintillation properties of rare-earth-doped LaAlO3 single crystals / Jan Pejchal, Jan Barta, [et al] // Radiation Measurements. – 2019. – Vol. 121. – P. 26 –31.

https://doi.org/10.1016/j.radmeas.2018.11.010

Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare–earth oxides / E. R. Andrievskaya // J. European Ceram. Soc. – 2008. – Vol. 28, N 12. – Р. 2363–2388.

http://dx.doi.org/10.1016/j.jeurceramsoc.2008.01.009

Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400 oC < T < T Liquide) / J. Coutures, A. Rouanet, R. Verges, M. Foex // J. Solid State Chem. – 1976. – Vol. 17, N 1–2. – P. 172–182.

http://dx.doi.org/10.1016/0022-4596(76)90218-8

Coutures J. Etude a haute température des systèmes formés par les sesquioxydes de lanthane avec les sesquioxydes de lanthanides. II. Influence de la trempe sur la nature des phases obtenues à la température ambiante / J. Coutures, F. Sibieude, M. Foex // J. Solid State Chem. – 1976. – Vol. 17. – P. 377–384. http://dx.doi.org/10.1016/S0022-4596(76)80006-0

Взаимодействие оксида лантана с оксидом иттрия / Л. М. Лопато, Б. С. Нигманов, А. В.Шевченко, З. А. Зайцева // Изв. АН СССР. Неорган. материалы. – 1986. – 22, № 5. – С. 771–774.

Berndt V. New ABO3 interlanthanide perovskite compounds / V. Berndt, D. Maier, C. Keller // J. Solid State Chem. – 1975. – Vol. 13, N 1–2. – P. 131–135. http://dx.doi.org/10.1016/0022-4596(75)90090-0

Phase diagram of the system La2O3–Y2O3 at high temperatures / M. Mizuno, A. Rouanet, T. Yamada, T. Noguchi // J. Ceram. Soc. Japan. – 1976. – Vol. 84, No. 7. – P. 342–347.

http://dx.doi.org/10.2109/jcersj1950.84.971_342

Coutures J. Etude a haute temperature du diagrama d' equilibrie du systeme forme par le sesquioxyde d'yttrium / J. Coutures, M. Foex // J. Solid State Chem. – 1974. – Vol. 11, N 4. – P. 294–300.

http://dx.doi.org/10.1016/ S0022-4596(74)80034-4

George W. Analytical microscopy study of phases and fracture in Y2O3–La2O3 alloys / W. George, T. Emma, William H. Rhodes // J. Am. Ceram. Soc. – 1988. – Vol. 71, N 10. – P. 820–825.

http://dx.doi.org/10.1111/j.1151-916.1988.tb07529.x

Rhodes W. H. Controlled transient solid second phase sintering of yttria / W. H. Rhodes // J. Am. Ceram. Soc. – 1981. – Vol. 64, N 1. – P. 13–17.

doi:10.1111/j.1151-2916.1981.tb09551.x

Шевченко А. В. Взаимодействие оксидов самария и гадолиния с оксидом иттрия / А. В. Шевченко, Б. С. Нигманов, З. А. Зайцева, Л. М. Лопато // Изв. АН СССР. Неорган. материалы. – 1986. – Т. 22, № 5. – С. 775–778.

Торопов С. А. Диаграммы состояния систем тугоплавких оксидов / С. А. Торопов. – Ленинград: Наука, 1987. – 822 c.

Андриевская Е. Р. Фазовое соотнашение в системе La2O3–Sm2O3 при температуре 1500оС / Е. Р. Андриевская, О. А. Корниенко, Ж. Д. Богатырева // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2016. – № 25. – С. 15–28.

References

Wang, S. F., Zhang, J., Luo, D. W., Gu, F., Tang, D. Y., Dong, Z. L., Tan, G.E.B., Que, W. X., Zhang, T. S., Li, S., Kong, L. B. (2013). [Transparent ceramics: Processing, materials and applications]. Progress in Solid State Chem., 41, 20–54.

http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002.

Zehua Liu, Shuxing Li, Yihua Huang, Lujie Wang, Yirong Yao, Tao Long, Xiumin Yao, Xuejian Liu, Zhengren Huang (2018). [Composite ceramic with high saturation input powder in solid-state laser lighting: Microstructure, properties, and luminous emittances] Ceramics International, 44(16), 20232–20238.

https://doi.org/10.1016/j.ceramint.2018.08.008

Ivy Krystal, Jones Zachary, M. Seeley Nerine, J. Cherepy Eric, B. Duoss Stephen, A. Payn (2018). [Direct ink write fabrication of transparent ceramic gain media].Optical Materials, 75, 19–25.

https://doi.org/10.1016/j.optmat.2017.10.005

Liangkai Liu, QihuaZhu, Qiangqiang Zhu, Benxue Jiang, Minghui Feng, Long Zhang, [Fabrication of fine-grained undoped Y2O3 transparent ceramic using nitrate pyrogenation synthesized nanopowders]. Ceramics International. Available online 1 December 2018.

https://doi.org/10.1016/j.ceramint.2018.11.232

Narasimha S., Prasad, Trivedi, Sudhir, Kutcher, Susan. [Development of ceramic solid-state laser host materials]. Narasimha.s. prasad@nasa.gov.

Chen, By Shi, Wu, Yiquan (2013). [New opportunities for transparent ceramics]. Amer. Ceram. Soc. Bull, 2, 32–37.

Takumi Kato, Naoki Kawano Go Okada Noriaki Kawaguchi Takayuki Yanagida (2017). [Comparative study of dosimeter properties between Al2O3 transparent ceramic and single crystal]. Radiation Measurements, 107, 43–47.

https://doi.org/10.1016/j.radmeas.2017.09.006

Qiang Zeng, Qinghua Zhang, Jianqi Qi, Tengfei Hua, Zhangyi Huang, Yanli Shi, Xingtao Chen, Gang Cheng, Nian Wei, Tiecheng Lu (2018). [Fabrication and luminescence properties of U: YAG transparent ceramic]. Optical Materials, 82(15), 56–59.

https://doi.org/10.1016/j.optmat.2018.05.004

Gülsüm Topateş, Baran Tarhan, Müge Tarhan (2017). [Chemical durability of zircon containing glass-ceramic glazes]. Ceramics International, 43(15), 12333–12337.

https://doi.org/10.1016/j.ceramint.2017.06.097

Benitez Tobias, Gómez Sergio Y., Pedro Antonio, Oliveira Novaesde, Travitzky Nahum, Hotza Dachamir (2017). [Transparent ceramic and glass-ceramic materials for armor applications]. Ceramics International, 43(16), 13031–13046.

https://doi.org/10.1016/j.ceramint.2017.07.205

Zhang Yumin, Jung In-Ho (2017). [Critical evaluation of thermodynamic properties of rare earth sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y)]. Calphad, 58, 169–203.

https://doi.org/10.1016/j.calphad.2017.07.001

Alexandra Navrotsky, Wingyee Lee, Aleksandra Mielewczyk-Gryn, Sergey V. Ushakov, Andre Anderko, Haohan Wu, Richard E. Rim (2015). [Thermodynamics of solid phases containing rare earth oxides]. The Journal of Chemical Thermodynamics, 88, 126–141.

https://doi.org/10.1016/j.jct.2015.04.008

Yoshimura, M., Rong, X.–Z. (1997). [Various solid solutions in the systems Y2O3–R2O3 (R – La, Nd, and Sm) at high temperature]. J. Mater. Sci. Lett, 16, 1961–1963.

http://dx.doi.org/10.1023/A:1018559322304.

Jan Pejchal, Jan Barta, Tomas Trojek, Romana Kucerkova, Alena Beitlerova, Martin Nikl (2019) [Luminescence and scintillation properties of rare-earth-doped LaAlO3 single crystals]. Radiation Measurements, 121, 26–31.

https://doi.org/10.1016/j.radmeas.2018.11.010

Andrievskaya, E. R. (2008). [Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare–earth oxides]. J. European Ceram. Soc., 28 (12), 2363–2388.

http://dx.doi.org/10.1016/j.jeurceramsoc.2008.01.009

Coutures, J., Rouanet, A., Verges, R., Foex, M. (1976). [Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400 oC < T < T Liquide)]. J. Solid State Chem., 17(1–2), 172–182. http://dx.doi.org/10.1016/0022-4596(76)90218-8

Coutures, J., Sibieude, F., Foex, M. (1976). [Etude a haute température des systèmes formés par les sesquioxydes de lanthane avec les sesquioxydes de lanthanides. II. Influence de la trempe sur la nature des phases obtenues à la température ambiante]. J. Solid State Chem., 17, 377–384.

http://dx.doi.org/10.1016/S0022-4596(76)80006-0

Lopato, L. M., Nigmanov, B. S., Shevchenko, A. V., Zaitseva, Z. A. (1986) [Interaction of lanthanum oxide with yttrium oxide]. Izv. Academy of Sciences of the USSR. Inorgan materials, 22 (5), 771-774.

Berndt, V., Maier, D., Keller, C., Berndt, V. (1975). [New ABO3 interlanthanide perovskite compounds]. J. Solid State Chem., 13 (1–2), 131–135.

http://dx.doi.org/10.1016/0022-4596(75)90090-0

Mizuno, M., Rouanet, A., Yamada, T., Noguchi T. (1976). [Phase diagram of the system La2O3–Y2O3 at high temperatures]. J. Ceram. Soc. Japan, 84 (7), 342–347. http://dx.doi.org/10.2109/jcersj1950.84.971_342

Coutures, J., Foex, M. (1974). [Etude a haute temperature du diagrama d' equilibrie du systeme forme par le sesquioxyde d'yttrium]. J. Solid State Chem., 11 (4), 294–300.

http://dx.doi.org/10.1016/ S0022-4596(74)80034-4

George, W., Emma, T., William, H. (1988). [Rhodes Analytical microscopy study of phases and fracture in Y2O3–La2O3 alloys]. J. Am. Ceram. Soc., 71 (10), 820–825.

http://dx.doi.org/10.1111/j.1151-916.1988.tb07529.x

Rhodes, W. H. (1981). [Controlled transient solid second phase sintering of yttria]. J. Am. Ceram. Soc., 64 (1), 13–17.

http://dx.doi.org/10.1111/j.1151-916.1981.tb09551.x

Shevchenko, A. V., Nigmanov, B. S., Zaitseva, Z. A., Lopato, L. M. (1986). [Interaction of oxides of samarium and gadolinium with yttrium oxide]. Izv. Academy of Sciences of the USSR. Inorgan materials, 22(5), 775-778. (in Russian)

Toropov, S. A. (1987). [Diagrams of the state of refractory oxide systems]. Leningrad: Science, 822 c. (in Russian)

Andrievskaya, E. A., Kornienko, O. A., Bogatyreva, Zh. D. (2016). [Phase ratio in the system La2O3-Sm2O3 at a temperature of 1500oC]. Modern problems of physical materials science, IAM NAS of Ukraine, 25, 15-28. (in Russian)

Published

2019-01-05