RAMAN SCATTERING IN GLASSY Li2B4O7
DOI:
https://doi.org/10.15421/0817260204Keywords:
lithium tetraborate, mode, structural complexes, tetrahedral groups, trigonal groupsAbstract
Lithium tetraborate is a promising material to be used in the production of solid electrolytes and solid-state batteries. A powerful tool for investigating its structure in the B2O3–Li2O system is Raman spectroscopy. The Raman spectra were investigated using the XploRA PLUS (HORIBA Jobin Yvon) Raman spectrometer at the temperature of T = 300 K within the 70–2000 cm–1 range. The excitation wavelength was 785 nm, the spectral resolution was no worse than 1 cm–1. As a result of the study, we have determined the nature of vibrational modes. We detected a fine structure in the 70–400 cm–1 range, which we found to correspond to normal vibration of the lithium-oxygen structural complexes in the structure of [LiO6] frames, and also vibrations and librations of [LiO6] frame and the BO3 and BO4 groups in the structure of [B4O7]2– cluster as a whole. In the 400–800 cm–1 range the superposition of vibrations of [LiO4] clusters and [BO4] tetrahedrons takes place, whereas their normal vibrations are detected in the 800–1354 cm–1 range. In the 1300–2000 cm–1 range we observed the manifestation of two-phonon states, the normal vibrations of borate rings, and the symmetric stretching of the BO3 flat triangles, and detected two peaks that have not been observed previously. The obtained results show that the Raman spectra of glassy Li2B4O7 generally display a single-mode behavior and are caused by a combination of vibrations of different types which are interconnected via the frame structure of the glass consisting of complex boron-oxygen and lithium-oxygen structural complexes.
References
Padlyak B. V. Spectroscopy of the Er-doped lithium tetraborate glasses / B. V. Padlyak,R. Lisiecki, W. Ryba-Romanowski // Optical Materials. – 2016. –V.54. – P. 126–133. https://doi.org/10.1016/j.optmat.2016.02.025
Khalilzadeh N. Silver Doped Lithium Tetraborate Nanoparticles Synthesis and Evaluation // 5th International Conference on Advanced Research in Engineering and Technology (2017, June 1–4, Shiraz, Iran). – 2017. – P. 1–10.
Photoelestic properties of lithium tetraborate crystals / O. Krupych, O. Mys, T. Kryvyy [et al.] // Applied Optics. – 2016. – V. 55, N 36. – P. 10457–10462.
http://dx.doi.org/10.1364/AO.55.010457
Shardakov N.T. X-ray Fluorescence of Fe, Mn, and Ti in Lithium-Tetraborate-Based Glass //Glass Physics and Chemistry. – 2018. – V. 44, N 5. – P. 388–393.
http://dx.doi.org/10.1134/S1087659618050152
Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications / R. Nattudural, A. K. Raman, C. B. Palan, S. K. Omanwar // J. Material Science: Materials in electronics. – 2018. – V. 29, N 17. – P. 14427–14434.
https://doi.org/10.1007/s10854-018-9575-1
Positron lifetime spectroscopy of lithium tetraborate Li2B4O7 /O. Shpotyuk, V. Adamiv, I. Teslyul, A. Ingram // J. Non-Crystal solids. – 2017. – V. 471. – P. 338–343.
Рентгенолюмінесценція і спектроскопічні характе-ристики іонів Er3+ у полікристалічному тетрабораті літію / П.П. Пуга, П.С. Данилюк, В.М. Красилинець [et al.] // Науковий вісник Ужгородського універси-тету. Серія фізика. – 2015. – T. 38. – С. 56–63.
Рентгенолюминесценция ионов Eu3+ в стеклообраз-ном и поликристаллическом тетраборате лития / П.С. Данилюк, П.П. Пуга, В.М. Красилинець [et al.] // Физика и химия стекла. – 2018. – Т. 44, N 1. – С. 3–10.
Raman Scattering in Glassy Li2B4O7 Doped by Er2O3 / P.P. Puga, P.S. Danyliuk, A.I. Gomonai [et al.] // Ukr. J. Phys. Opt. – 2018. – V. 19, N 4. – P. 211–219.
Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. / T. D. Kelly, J. C. Petrosky, J. W. McClory [et al.] // Frontiers in Physics (Condensed Matter Physics). – 2014. – V. 27. – P. 1–10.
Investigations on structural and magnetic properties of Mn doped Er2O3 / R. Tomar, P. Kumar, A. Kumar [et al.] // Solid State Sciences. – 2017. – V. 67. – P. 8–12.
Abrashev M. V. Raman spectra of R2O3 (R – rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study / M. V. Abrashev, N. D. Todorov, J. Geshev // J. Appl. Phys. – 2014. – V. 116, N 10. – P. 103508-1–103508-7.
Paul G. L. Raman spectrum of Li2B4O7 / G.L. Paul, W. Taylor // J. Phys. C: Solid State Phys. – 1982. – V.15, N 8. – P. 1753–1764.
Furusawa S. Raman Scattering Study of Lithium Diborate (Li2B4O7) Single Crystal / S. Furusawa, S. Tange, Y. Ishibashi, K. Miwa // J. Phys. Soc. Japan. – 1990. – V.59, N 5. – P. 1825–1830.
Бурак Я. В. Продольно-поперечные расщепления фо-нонных мод в кристаллах Li2B4O7 / Я. В. Бурак, Я. О. Довгий, И. В. Китык // Журнал прикладной спек-троскопии. – 1990. – Т. 52, N 1. – C. 126–128.
Про фононні спектри монокристалів боратів / В. Т. Адамів, Т. Й. Берко, І. В. Кітик [та ін.] // Укр. фіз. журн. – 1992. – Т.37, N 3. – C. 368–373.
Спектри комбінаційного розсіювання світла моно-кристалів тетраборату літію / Т. Й. Берко, Я. О. Дов-гий, І. В. Кітик [та ін.] // Укр. фіз. журн. – 1993. – Т. 38, N 1. – C. 39–43.
Spectroscopic Characterization of Lithium Doped Borate Glasses / T. Lopez, E. Haro-Poniatowski, P. Bosh [et al.] // J. Sol-Gel Science and Technology. – 1994. – V. 2, N. 1–3. – P. 891–894.
Li Y. Pressure-induced Amorphization Study of Lithium Diborate / Y. Li, G. Lan. // J. Phys. Chem. Solids. – 1996. – V. 57, N 12. – P. 1887–1890.
Дергачев М. П. Комбинационное рассеяние света в кристаллах Li2B4O7 с примесями / М. П. Дергачев, В. Н. Моисеенко, Я. В. Бурак // Опт. и спектр. – 2001. – Т.90, N 4. – C. 604–607.
Вдовин А. В. Колебательный спектр кристаллов Li2B4O7 / А. В. Вдовин, В. Н. Моисеенко, В. С. Горелик, Я. В. Бурак // Физика твердого тела. – 2001. – Т. 43, N 9. – С. 1584–1589.
Бурак Я. В. Ізотопний ефект у спектрах комбі-наційного розсіяння світла в монокристалах Li2B4O7 / Я. В. Бурак, І. Б. Трач, В. Т. Адамів, І. М. Теслюк // Укр. фіз. журн. – 2002. – Т.47, N 10. – C. 923–927.
Горелик В. С. Комбинационное и гиперэлеевское рас-сеяние света в кристаллах тетрабората лития / В. С. Горелик, А. В. Вдовин, В. Н. Моисеенко – Препринт ФИАН РФ им. П.Н. Лебедева №13. Москва, 2003. – 99 с.
Elalaoui A. E. Raman scattering and non-linear optical properties in Li2B4O7 / A. E. Elalaoui, A. Maillard, M. D. Fontana // J. Phys.: Cond. Matter. – 2005. – V. 17, N 46. – P. 7441–7454.
Burak Ya. V. To the origin of vibrational modes in Raman spectra of Li2B4O7 single crystals / Ya. V. Burak, V. T. Adamiv, I. M. Teslyuk // Func. Mater. – 2006. – V. 13, N 4. – P. 591–595.
Voronko Yu. K. Raman Spectroscopy Study of the Phase Transformations of LiB3O5 and Li2B4O7 during Heating and Melting / Yu. K. Voronko, A. A. Sobol, V. E. Shukshin // Inorganic Materials. – 2013. – V. 49, N 9. – P. 923–929.
El Batal F. H. Gamma ray interaction with lithium diborate glasses containing transition metals ions / F. H. El Batal, A. A. El Kheshen, M. A. Azooz, S. M. Abo-Naf // Optical Materials. – 2008. – V. 30, N 6. – P. 881–891.
http://dx.doi.org/10.1016/j.optmat.2007.03.010
Yadav A. K. A review of the structures of oxide glasses by Raman spectroscopy / A. K. Yadav, P. Singh. // RSC Advances. – 2015. – V. 5, N 83. – P. 67583–67609.
Krogh-Moe J. The Crystal Structure of Lithium Diborate, Li2O–2B2O3 // Acta Cryst. – 1962. – V. 15, N 3. – P. 190–193.
Krogh-Moe J. Refinement of the Crystal Structure of Lithium Diborate, Li2O–2B2O3 // Acta Cryst. B. – 1968. – V. 24, N 2. – P. 179–181.
Cervinka L. Medium-range order in amorphous materials // J. Non-Crystalline Solids. – 1988. – V. 106. – P. 291–300.
Brillouin and Raman scattering study of borate glasses / J. Lorösch, M. Couzi, J. Pelous [et al.] // J. Non-Cryst. Sol. – 1984. – V. 69. – P. 1–25.
Shuker R. Raman-scattering selection-rule breaking and the density of states in amorphous materials / R. Shuker, R. W. Gammon. // Phys. Rev. Lett. – 1970. –V. 25, N 4. – P. 222–225.
Рентгенолюминесценция и спектроскопические характеристики ионов Er3+ в стеклообразной матрице тетрабората лития / П. С. Данилюк, П. П. Пуга, А. И. Гомонай [та ін.] // Опт. и спектр. – 2015. –Т. 118, N 6. – C. 956–961.
Спектры оптического поглощения и уровни энергии ионов Er3+ в стеклообразной матрице тетрабората лития / П. С. Данилюк, К. П. Попович, П. П. Пуга [та ін.] // Опт. спектр. – 2014. – Т. 117, N 3. – C. 783–788.
References
Padlyak, B. V., Lisiecki, R., Ryba-Romanowski, W. (2016). Spectroscopy of the Er-doped lithium tetraborate glasses. Optical Materials, 54, 126–133.
https://doi.org/10.1016/j.optmat.2016.02.025
Khalilzadeh, N. (2017) Silver Doped Lithium Tetraborate Nanoparticles Synthesis and Evaluation. The 5th International Conference on Advanced Research in Engineering and Technology (2017, June 1–4, Shiraz, Iran), 1–10.
Krupych, O., Mys, O., Kryvyy, T., Adamiv, V., Burak, Ya., Vlokh, R. (2016). Photoelestic properties of lithium tetraborate crystals. Applied Optics, 55(36), 10457–10462. http://dx.doi.org/10.1364/AO.55.010457
Shardakov N.T. (2018). X-ray Fluorescence of Fe, Mn, and Ti in Lithium-Tetraborate-Based Glass. Glass Physics and Chemistry. 44(5), 388–393.
http://dx.doi.org/10.1134/S1087659618050152
Nattudural, R., Raman, A. K., Palan, C. B., Omanwar S. K. (2018). Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications. J. Material Science: Materials in electronics. 29(17), 14427–14434.
https://doi.org/10.1007/s10854-018-9575-1
Shpotyuk, O., Adamiv, V., Teslyul, I., Ingram A. (2017). Positron lifetime spectroscopy of lithium tetraborate Li2B4O7. J. Non-Crystal solids. 471, 338–343.
https://doi.org/10.1016/j.jnoncrysol.2017.06.016
Puga, P., Danilyuk, P., Krasylynec, V., Turok I., Gomonai, O., Birov, M., Volovich, P., Chychura, I., Rizak, V. (2015). X-ray and Spectroscopic Characteristics of Er3+ Ions in Polycrystalline Lithium Tetraborate. Uzhhorod University Scientific Herald. Series Physics, 38, 56–63.
http://dx.doi.org/10.24144/2415-8038.2015.38.56-63
Danilyuk, P. S., Puga, P. P., Krasilinets, V. N., Gomonai, A. I., Puga, G. D., Rizak, V. M., Turok, I. I. (2018). X-ray Fluorescence of Eu3+ Ions in Glassy and Polycrystalline Lithium Tetraborate, Glass Physics and Chemistry, 44(1), 1–6. http://dx.doi.org/10.1134/S1087659618010066
Puga, P.P., Danyliuk, P.S., Gomonai, A.I., Rizak, H.V., Rizak, I.М., Rizak, V.M., Puga, G.D., Kvetková, L., Byrov, М.М. (2018). Raman Scattering in Glassy Li2B4O7 Doped by Er2O3. Ukr. J. Phys. Opt., 19(4), 211–219.
http://dx.doi.org/10.3116/16091833/19/4/211/2018
Kelly, T. D., Petrosky, J. C., McClory, J. W., Adamiv, V. T., Burak, Y. V., Padlyak, B. V., Teslyuk, J. M., Lu, N., Wang, L., Mei, W. N., Dowben, P. A. (2014). Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. Frontiers in Physics (Condensed Matter Physics), 27, 1–10.
https://doi.org/10.3389/fphy.2014.00031
Tomar, R., Kumar, P., Kumar, A., Kumar, A., Kumar, P., Pant, R. P., Asokan, K. (2017). Investigations on structural and magnetic properties of Mn doped Er2O3. Solid State Sciences, 67, 8–12.
https://doi.org/10.1016/j.solidstatesciences.2017.03.003
Abrashev M. V., Todorov N. D., Geshev J. (2014). Raman spectra of R2O3 (R – rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. J. Appl. Phys., 116(10), 103508-1–103508-7.
https://doi.org/10.1063/1.4894775
Paul, G. L., Taylor, W. (1982). Raman spectrum of Li2B4O7. J. Phys. C: Solid State Phys., 15(8), 1753–1764.
http://dx.doi.org/10.1088/0022-3719/15/8/021
Furusawa, S., Tange, S., Ishibashi, Y., Miwa, K. (1990). Raman Scattering Study of Lithium Diborate (Li2B4O7) Single Crystal. J. Phys. Soc. Japan., 59(5), 1825–1830.
http://dx.doi.org/10.1143/JPSJ.59.1825
Burak, Ya. V., Dovhiy, Ya. O., Kityk, I. V. (1990). Longitudinal-transverse splitting of phonon modes in Li2B4O7 crystals. Journal of Applied Spectroscopy, 52(1), 126–128 (in Russian).
Adamіv, V. T., Berko, T. J., Kіtyk, І. V., Burak, Ja. V., Dzhala, V. І., Dovgij, Ja. O., Moroz, І. E. (1992). On phonon spectra of the borate monocrystals. Ukr. J. Phys., 37(3), 368–373 (in Ukrainian).
Berko, T. J., Dovgij, Ja. O., Kіtyk, І. V., Burak, Ja. V., Dzhala, V. І., Moroz, І. E. (1993). Raman spectra of lithium tetraborate monocrystals. Ukr. J. Phys., 38(1), 39–43 (in Ukrainian).
Lopez, T., Haro-Poniatowski, E., Bosh, P., Asomoza, M., Gomez, R., Massot, M., Balkanski, M. (1994). Spectroscopic Characterization of Lithium Doped Borate Glasses. J. Sol-Gel Science and Technology, 2(1–3), 891–894.
http://dx.doi.org/10.1007/BF00486371
Li, Y., Lan, G. (1996). Pressure-induced Amorphization Study of Lithium Diborate. Phys. Chem. Solids, 57(12), 1887–1890.
http://dx.doi.org/10.1016/S0022-3697(96)00081-9
Dergachev, M. P., Moiseenko, V. N., Burak, Ya. V. (2001). Raman Scattering in Li2B4O7 Crystals with Impurities. Optics and Spectroscopy, 90(4), 604–607.
http://dx.doi.org/10.1134/1.1366746
Vdovin, A. V., Moiseenko, V. N., Gorelik, V. S., Burak, Ya. V. (2001). Vibrational Spectrum of Li2B4O7 Crystals. Physics of Solid State, 43(9), 1648–11652.
http://dx.doi.org/10.1134/1.1402218
Burak, Ya. V., Trach, I. B., Adamiv, V. T., Teslyuk, I. M. (2002). Isotope Effect in the Raman Spectra of Li2B4O7 Single Crystals. Ukr. J. Phys., 47(10), 923-928 (in Ukrainian).
Gorelik, V. S., Vdovin, A. V., Moiseenko, V. N. (2003). [Raman and hyper-Rayleigh scattering of light in lithium tetraborate crystals]. Preprint of the Lebedev Physics Institute of Russian Academy of sciences, N 13, Moscow (in Russian).
Elalaoui, A. E., Maillard, A., Fontana, M. D. (2005). Raman scattering and non-linear optical properties in Li2B4O7. J. Phys.: Cond. Matter, 17(46), 7441–7454.
https://doi.org/10.1088/0953-8984/17/46/027
Burak, Ya. V., Adamiv, V. T., Teslyuk, I. M. (2006). To the origin of vibrational modes in Raman spectra of Li2B4O7 single crystals. Func. Mater., 13(4), 591–595.
Voronko, Yu. K., Sobol, A. A., Shukshin, V. E. (2013). Raman Spectroscopy Study of the Phase Transformations of LiB3O5 and Li2B4O7 during Heating and Melting. Inorganic Materials, 49(9), 923–929.
http://dx.doi.org/10.1134/S0020168513090203
El Batal, F. H., El Kheshen, A. A., Azooz, M. A., Abo-Naf, S. M. (2008). Gamma ray interaction with lithium diborate glasses containing transition metals ions. Optical Materials, 30(6), 881–891.
http://dx.doi.org/10.1016/j.optmat.2007.03.010
Yadav, A. K., Singh, P. (2015). A review of the structures of oxide glasses by Raman spectroscopy. RSC Advances, 5(83), 67583–67609.
http://dx.doi.org/10.1039/C5RA13043C
Krogh-Moe, J. (1962). The Crystal Structure of Lithium Diborate, Li2O–2B2O3. Acta Cryst., 15(3), 190–193.
http://dx.doi.org/10.1107/S0365110X6200050X
Krogh-Moe, J. (1968). Refinement of the Crystal Structure of Lithium Diborate, Li2O–2B2O3. Acta Cryst. B, 24(2), 179–181.
http://dx.doi.org/10.1107/S0567740868001913
Cervinka, L. (1988). Medium-range order in amorphous materials. J. Non-Cryst. Sol., 106, 291–300.
http://dx.doi.org/10.1016/0022-3093(88)90277-3
Lorösch, J., Couzi, M., Pelous, J., Vacher, R., Levasseur, A. (1984). Brillouin and Raman scattering study of borate glasses. J. Non-Cryst. Sol., 69, 1–25.
http://dx.doi.org/10.1016/0022-3093(84)90119-4
Shuker, R., Gammon, R. W. (1970). Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys. Rev. Lett., 25(4), 222–225.
http://dx.doi.org/10.1103/PhysRevLett.25.222
Danilyuk, P. S., Puga, P. P., Gomonai, A. I., Krasilinets, V. N., Volovich, P. N., Rizak, V. M. (2015). X-Ray Luminescence and Spectroscopic Characteristics of Er3+ Ions in a Glassy Lithium Tetraborate Matrix. Optics and Spectroscopy, 118(6), 924–929.
http://dx.doi.org/10.1134/S0030400X15060089
Danilyuk, P. S., Popovich, K. P., Puga, P. P., Gomonai, A. I., Primak, N. V., Krasilinets, V. N., Turok, I. I., Puga, G. D., Rizak, V. M. (2014). Optical Absorption Spectra and Energy Levels of Er3+ Ions in Glassy Lithium Tetraborate Matrix. Optics and Spectroscopy, 117(3), 759–763.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Дніпровський національний університет імені Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).