DOI: https://doi.org/10.15421/081906

ESTIMATION OF THE POSSIBILITIES FOR USING THE SOLID HYDROCARBON FUELS IN AUTOPHAGE LAUNCH VEHICLE

Vitaly V. Yemets, Mykola M. Dron', Olena S. Kositsyna

Abstract


The perspective way of reducing the cost of transport space operations is analyzed. It is shown that using propellant tanks polyethylene covers as fuel is the most effective way to reduce the cost of launching a satellite to low near-Earth orbits. The specific features of the incendiary (autophage) small launch vehicles are the possibility of their implementation in the single-stage version and the lack of design of the tank compartments in the traditional sense that seems promising for the development of launch vehicles for microsatellites. The influence of metal-containing polyethylene fuels additives on the specific thrust impulse autophage engines is investigated. 

Ultra high molecular weight polyethylene in combination with oxygen oxidants is a suitable material for the production of incendiary small launch vehicles tank covers by criteria such as theoretical specific impulse, durability, production and processing manufacturability, chemical resistance, safety for the environment, and ability to almost 100% thermal destruction with the formation of gaseous products. The mass and energy gains from the implementation of the concept of the tank covers combustion will not be reduced because of the energy and other characteristics of the fuel.


Keywords


launch vehicle, autophage launch vehicle, high molecular weight polyethylene, metal-containing additives, hydrocarbon fuel, specific thrust impulse

References


Yemets, V., Harkness, P., Dron’, M., Pashkov, A., Worrall, K., Middleton, M. (2018). Autophage Engines: Toward a Throttleable Solid Motor. J. Spacecr. Rockets, 55 (4), 984–992. https://doi.org/10.2514/1.A34153

Yemets, V., Dron’, M., Yemets, T., Kostritsyn, O. (2015). The Infinite Staging Rocket – A Progress to Realization. 66-th International Astronautics Congress, Jerusalem, Israel, 12 – 16 October 2015. IAC-15, D2,7,7,×28649 – 7. https://iafastro.directory/iac/archive/browse/IAC-15/D2/7/28649/

Yemets, M., Yemets, V., Harkness, P., Dron’, M., Worall, K., Pashkov, A., Kostrytsyn, O., Yemets, T. (2018). Caseless throttleable solid motor for small spacecraft. 69th International Astronautical Congress, Bremen, Germany, 01-05 October 2018, IAC-18-C4.8-B4.5A, 13, ×48017, 10. https://iafastro.directory/iac/paper/id/48017/summary/

Dron’, M., Golubek, A., Dubovik, L., Dreus, A., Heti, K. (2019). Analysis of ballistic aspects in the combined method for removing space objects from the nearearth orbits. East.-Eur. J. Enterp. Technol., 2 (98), 49–54. https://doi.org/10.15587/1729-4061.2019.161778

Dron’, M., Khorolskiy, P., Dubovik, L., Khitko, A., Velikiy I. (2012). Estimation of Capacity of Debris Collector with Electric Propulsion System Creation Taking in a Count Energy Response of the Existing Launch Vehicles. Prog. of 63-th International Astronautical Congress, 1-5 October, 2012, Naples, Italy, 2694–2698.

http://iafastro.directory/iac/paper/id/13351/summary/

Dron, M., Dreus, A., Golubek, A., Abramovsky, Y. (2018). Investigation of aerodynamics heating of space debris object at reentry to earth atmosphere. 16th IAA Symposium on space debris, Bremen. IAC-18,A6,IP,39,×43826, 7.

https://iafastro.directory/iac/archive/browse/IAC-18/A6/IP/43826/

Dron’, N. M., Khorolskiy, P. G., Dubovik, L. G. (2014). [Ways to reduce technogenic pollution of near-Earth space]. Naukovyj Visnyk Nacionaljnogo universytetu, 3 (141), 125-130 (in Russian). http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Nvngu_2014_3_21

Alemasov, V. Ye., Dregalin, A. F., Tishin, A.P. (1989). [The theory of rocket motors]. In V. P. Glushko (Ed.). Moskow, Russian Federation: Mashinostroenie (in Russain).

Leshchenko, Ye. P. (1991). [Thermodynamics of chemically reacting systems]. Мoskow, Russian Federation: MAI (in Russian).

Castillo Griego, Nadir Yilmaz, Alpaslan Atmanli. (2019). Analysis of aluminum particle combustion in a downward burning solid rocket propellant. Fuel, 237, 405-412. https://doi.org/10.1016/j.fuel.2018.10.016

Sherif Elbasuney, Ahmed Fahd. (2019). Combustion wave of metalized extruded double-base propellants. Fuel, 237, 1274-1280. https://doi.org/10.1016/j.fuel.2018.10.018

Poryazov, V. A. (2015). [Influence of the dispersion of aluminum particles on the combustion rate of metallized composition propellants]. Vestn. Tomsk. gos. un-ta. Ser. Matematika i mekhanika, 1 (33), 96–104 (in Rissian). https://doi.org/10.17223/19988621/33/10

Glushko, V. P., Gurvich, L. V., Bergman, G. A. (Ed.). (1982). [Thermodynamic properties of individual substances: handbook. Vol. 4]. Moskow, Russian Federation: Nauka (in Russain).

Arkhipova, Z. V., Grigor’ev, V. A., Veselovskaya, Ye. V. (1980). [High density polyethylene. Scientific and technical bases of industrial synthesis]. In A. V. Polyakov (Ed.). Leningrad, Russian Federation: Khimiya (in Russain).

Shen, Lihua, Severn, John, Bastiaansen, Cees W. M. (2018). Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax. Polymer, 153, 354–361. https://doi.org/10.1016/j.polymer.2018.01.083

Long, H. Nguyen, Torsten, R. Lässig, Shannon, Ryan, Riedel, Werner, Mouritz, Adrian P., Orifici, Adrian C. (2015). Numerical Modelling of Ultra-High Molecular Weight Polyethylene Composite under Impact Loading. Procedia Eng., 103, 436–443.

https://doi.org/10.1016/j.proeng.2015.04.043

Junchun Yu, Bertil Sundqvist, Bounphanh Tonpheng, Ove Andersson. (2014). Thermal conductivity of highly crystallized polyethylene. Polymer, 55 (1), 195–200. https://doi.org/10.1016/j.polymer.2013.12.001

Long, H. Nguyen, Torsten, R. Lässig, Shannon, Ryan, Riedel, Werner, Mouritz, Adrian P. , Orifici, Adrian C.. (2016). A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact. Composites, Part A., 84, 224–235. https://doi.org/10.1016/j.compositesa.2016.01.014

Mohamed E. Mahmoud, Ahmed M. El-Khatib, Mohamed S. Badawi, Amal R. Rashad, Rehab M. El-Sharkawy, Abouzeid A. Thabet. (2018). Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem., 145, 160–173. https://doi.org/10.1016/j.radphyschem.2017.10.017

Joel, J., Xavior M. Anthony. (2018). Aluminum Alloy composites and its machinability studies; A review. Mater. Today: Proc., 5 (5), 13556–13562.

https://doi.org/10.1016/j.matpr.2018.02.351

Razvan, A. Iernutan, Florin, Babota, Raluca, Istoan. (2019). Carbon fibre reinforced aluminium mesh composite materials. Procedia Manufacturing, 32, 901–907. https://doi.org/10.1016/j.promfg.2019.02.301

Friedrich, K. (2018). Polymer composites for tribological application. Advanced Industrial and engineering Polymer Research, 1 (1), 3–39.

https://doi.org/10.1016/j.aiepr.2018.05.001

Brevnov, P. N., Kirsankina, G. R., Zabolotnov, A. S., Krasheninnikov, V. G., Grinev, V.G., Novokshonova, L.A., Berezkina, N.G., Sinevich, E.A., Shcherbina, M.A. (2016). Synthesis and properties of nanocomposite materials based on ultra-high-molecular-weight polyethylene and graphite nanoplates. Polymer Science. Series C, 58 (1), 42–54. https: //doi.org/10.7868/S2308114716010027

Glogoleva, O. V. (2014). [The effect of natural fillers on the properties of ultrahigh molecular weight polyethylene]. In A. A. Okhlopkova (Eds.). Khimiya: obrazovanie, nauka, tekhnologiya. Sbornik trudov vserossiyskoy nauchno-prakticheskoy konferentsii s elementami nauchnoy shkoly (P. 250–256). Kirov, Russian Federation: MTsNIP (in Russian).

Shahjadi Hisan Farjana, Nazmul Huda, M. A. Parvez Mahmud. (2019). Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci. Total Environ., 663, 958–970. https://doi.org/10.1016/j.scitotenv.2019.01.400


Comments on this article

View all comments




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

______________________________________________________
Journal of Chemistry and Technologies
eISSN: 2663-2942 | pISSN: 2663-2934
Address of founder:chem.dnu@gmail.com
The journal publishes scientific works on conditions: Creative Commons Attribution 4.0 International License
Founder: Oles Honchar Dnipro National University