ESTIMATION OF THE POSSIBILITIES FOR USING THE SOLID HYDROCARBON FUELS IN AUTOPHAGE LAUNCH VEHICLE

Authors

  • Vitaly V. Yemets Oles Honchar Dnipro National University, Ukraine
  • Mykola M. Dron' Oles Honchar Dnipro National University, Ukraine
  • Olena S. Kositsyna Oles Honchar Dnipro National University, Ukraine https://orcid.org/0000-0003-0857-831X

DOI:

https://doi.org/10.15421/081906

Keywords:

launch vehicle, autophage launch vehicle, high molecular weight polyethylene, metal-containing additives, hydrocarbon fuel, specific thrust impulse

Abstract

The perspective way of reducing the cost of transport space operations is analyzed. It is shown that using propellant tanks polyethylene covers as fuel is the most effective way to reduce the cost of launching a satellite to low near-Earth orbits. The specific features of the incendiary (autophage) small launch vehicles are the possibility of their implementation in the single-stage version and the lack of design of the tank compartments in the traditional sense that seems promising for the development of launch vehicles for microsatellites. The influence of metal-containing polyethylene fuels additives on the specific thrust impulse autophage engines is investigated. 

Ultra high molecular weight polyethylene in combination with oxygen oxidants is a suitable material for the production of incendiary small launch vehicles tank covers by criteria such as theoretical specific impulse, durability, production and processing manufacturability, chemical resistance, safety for the environment, and ability to almost 100% thermal destruction with the formation of gaseous products. The mass and energy gains from the implementation of the concept of the tank covers combustion will not be reduced because of the energy and other characteristics of the fuel.

Author Biographies

Vitaly V. Yemets, Oles Honchar Dnipro National University

Technology of Aircraft Manufacturing Department, Professor, PhD

Mykola M. Dron', Oles Honchar Dnipro National University

Designing and Construction of Aircrafts Department, Professor, PhD

Olena S. Kositsyna, Oles Honchar Dnipro National University

Chemistry and Chemical Technology of High-molecular compounds Department , Associate Professor, PhD

References

Yemets, V., Harkness, P., Dron’, M., Pashkov, A., Worrall, K., Middleton, M. (2018). Autophage Engines: Toward a Throttleable Solid Motor. J. Spacecr. Rockets, 55 (4), 984–992. https://doi.org/10.2514/1.A34153

Yemets, V., Dron’, M., Yemets, T., Kostritsyn, O. (2015). The Infinite Staging Rocket – A Progress to Realization. 66-th International Astronautics Congress, Jerusalem, Israel, 12 – 16 October 2015. IAC-15, D2,7,7,×28649 – 7. https://iafastro.directory/iac/archive/browse/IAC-15/D2/7/28649/

Yemets, M., Yemets, V., Harkness, P., Dron’, M., Worall, K., Pashkov, A., Kostrytsyn, O., Yemets, T. (2018). Caseless throttleable solid motor for small spacecraft. 69th International Astronautical Congress, Bremen, Germany, 01-05 October 2018, IAC-18-C4.8-B4.5A, 13, ×48017, 10. https://iafastro.directory/iac/paper/id/48017/summary/

Dron’, M., Golubek, A., Dubovik, L., Dreus, A., Heti, K. (2019). Analysis of ballistic aspects in the combined method for removing space objects from the nearearth orbits. East.-Eur. J. Enterp. Technol., 2 (98), 49–54. https://doi.org/10.15587/1729-4061.2019.161778

Dron’, M., Khorolskiy, P., Dubovik, L., Khitko, A., Velikiy I. (2012). Estimation of Capacity of Debris Collector with Electric Propulsion System Creation Taking in a Count Energy Response of the Existing Launch Vehicles. Prog. of 63-th International Astronautical Congress, 1-5 October, 2012, Naples, Italy, 2694–2698.

http://iafastro.directory/iac/paper/id/13351/summary/

Dron, M., Dreus, A., Golubek, A., Abramovsky, Y. (2018). Investigation of aerodynamics heating of space debris object at reentry to earth atmosphere. 69th International Astronautical Congress, Bremen, Germany, 01 – 05 October 2018, Bremen, IAC-18-A6.1.5. Paper-Nr: IAC-18.A6.IP.39, 3923-3929.

https://iafastro.directory/iac/archive/browse/IAC-18/A6/IP/43826/

Dron’, N. M., Khorolskiy, P. G., Dubovik, L. G. (2014). [Ways to reduce technogenic pollution of near-Earth space]. Naukovyj Visnyk Nacionaljnogo universytetu, 3 (141), 125-130 (in Russian). http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Nvngu_2014_3_21

Alemasov, V. Ye., Dregalin, A. F., Tishin, A.P. (1989). [The theory of rocket motors]. In V. P. Glushko (Ed.). Moskow, Russian Federation: Mashinostroenie (in Russain).

Leshchenko, Ye. P. (1991). [Thermodynamics of chemically reacting systems]. Мoskow, Russian Federation: MAI (in Russian).

Castillo Griego, Nadir Yilmaz, Alpaslan Atmanli. (2019). Analysis of aluminum particle combustion in a downward burning solid rocket propellant. Fuel, 237, 405-412. https://doi.org/10.1016/j.fuel.2018.10.016

Sherif Elbasuney, Ahmed Fahd. (2019). Combustion wave of metalized extruded double-base propellants. Fuel, 237, 1274-1280. https://doi.org/10.1016/j.fuel.2018.10.018

Poryazov, V. A. (2015). [Influence of the dispersion of aluminum particles on the combustion rate of metallized composition propellants]. Vestn. Tomsk. gos. un-ta. Ser. Matematika i mekhanika, 1 (33), 96–104 (in Rissian). https://doi.org/10.17223/19988621/33/10

Glushko, V. P., Gurvich, L. V., Bergman, G. A. (Ed.). (1982). [Thermodynamic properties of individual substances: handbook. Vol. 4]. Moskow, Russian Federation: Nauka (in Russain).

Arkhipova, Z. V., Grigor’ev, V. A., Veselovskaya, Ye. V. (1980). [High density polyethylene. Scientific and technical bases of industrial synthesis]. In A. V. Polyakov (Ed.). Leningrad, Russian Federation: Khimiya (in Russain).

Shen, Lihua, Severn, John, Bastiaansen, Cees W. M. (2018). Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax. Polymer, 153, 354–361. https://doi.org/10.1016/j.polymer.2018.01.083

Long, H. Nguyen, Torsten, R. Lässig, Shannon, Ryan, Riedel, Werner, Mouritz, Adrian P., Orifici, Adrian C. (2015). Numerical Modelling of Ultra-High Molecular Weight Polyethylene Composite under Impact Loading. Procedia Eng., 103, 436–443.

https://doi.org/10.1016/j.proeng.2015.04.043

Junchun Yu, Bertil Sundqvist, Bounphanh Tonpheng, Ove Andersson. (2014). Thermal conductivity of highly crystallized polyethylene. Polymer, 55 (1), 195–200. https://doi.org/10.1016/j.polymer.2013.12.001

Long, H. Nguyen, Torsten, R. Lässig, Shannon, Ryan, Riedel, Werner, Mouritz, Adrian P. , Orifici, Adrian C.. (2016). A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact. Composites, Part A., 84, 224–235. https://doi.org/10.1016/j.compositesa.2016.01.014

Mohamed E. Mahmoud, Ahmed M. El-Khatib, Mohamed S. Badawi, Amal R. Rashad, Rehab M. El-Sharkawy, Abouzeid A. Thabet. (2018). Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem., 145, 160–173. https://doi.org/10.1016/j.radphyschem.2017.10.017

Joel, J., Xavior M. Anthony. (2018). Aluminum Alloy composites and its machinability studies; A review. Mater. Today: Proc., 5 (5), 13556–13562.

https://doi.org/10.1016/j.matpr.2018.02.351

Razvan, A. Iernutan, Florin, Babota, Raluca, Istoan. (2019). Carbon fibre reinforced aluminium mesh composite materials. Procedia Manufacturing, 32, 901–907. https://doi.org/10.1016/j.promfg.2019.02.301

Friedrich, K. (2018). Polymer composites for tribological application. Advanced Industrial and engineering Polymer Research, 1 (1), 3–39.

https://doi.org/10.1016/j.aiepr.2018.05.001

Brevnov, P. N., Kirsankina, G. R., Zabolotnov, A. S., Krasheninnikov, V. G., Grinev, V.G., Novokshonova, L.A., Berezkina, N.G., Sinevich, E.A., Shcherbina, M.A. (2016). Synthesis and properties of nanocomposite materials based on ultra-high-molecular-weight polyethylene and graphite nanoplates. Polymer Science. Series C, 58 (1), 42–54. https: //doi.org/10.7868/S2308114716010027

Glogoleva, O. V. (2014). [The effect of natural fillers on the properties of ultrahigh molecular weight polyethylene]. In A. A. Okhlopkova (Eds.). Khimiya: obrazovanie, nauka, tekhnologiya. Sbornik trudov vserossiyskoy nauchno-prakticheskoy konferentsii s elementami nauchnoy shkoly (P. 250–256). Kirov, Russian Federation: MTsNIP (in Russian).

Shahjadi Hisan Farjana, Nazmul Huda, M. A. Parvez Mahmud. (2019). Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci. Total Environ., 663, 958–970. https://doi.org/10.1016/j.scitotenv.2019.01.400

Published

2019-08-16