THE SYNTHESIS AND ELECTROCATALYTIC ACTIVITY OF PbO2-POLYELECTROLYTE AND PbO2-SURFACTANT COMPOSITE COATINGS
DOI:
https://doi.org/10.15421/081910Keywords:
polyelectrolyte, surfactant, lead dioxide, nitrate electrolyte, oxygen evolution reactionAbstract
The regularities of deposition of PbO2-polyelectrolyte and PbO2-surfactant composite coatings have been investigated. On CV several characteristic areas can be distinguished: at the anode region of CV at potentials higher than 1.4 V, an anode current is growing exponentially due to the simultaneous reactions of Pb(II) oxidation and oxygen evolution. At the cathodic branch of CV, a current maximum is observed at potentials of 1.0–1.2 V, corresponding to the reaction of the reduction of lead dioxide. When polyaminoguanidine hydrochloride is present in the electrolyte, the electrodeposition of lead dioxide is inhibited. In the presence of anionic polymer additive Nafion® in the electrolyte, one can see an increase in the peak of cathodic reduction of lead dioxide, which indicates an increase in the formation rate of PbO2. The addition to the deposition electrolyte of anionic surfactants leads to a slight inhibition of the process of deposition of PbO2. As one can see from the experimental data, the adsorption of anionic surfactants is satisfactorily described by the Langmuir isotherm. Values of the limiting adsorption and the adsorption equilibrium constant were calculated. According to the results obtained, anionic surfactants, cationic polyelectrolyte polyaminoguanidine hydrochloride and anionic polyelectrolyte Nafion® can be used as additives to the electrolyte during lead dioxide deposition. It has been established, that they included into the growing deposit, forming composite coatings with different composition and various electrocatalytic activity in oxygen evolution reaction. The content of organic compound in the oxide can vary from 2 to 16 w.%, forming a composite coating surfactant–oxide and polyelectrolyte–oxide. The oxygen evolution overpotential decreases in the line C4F9SO3K> C12H25O4SNa> C16H29O6SNa. It should be noted that the adsorption energy on PbO2 increases in the same line.
References
Vargas, R., Borras, C., Mendez, D., Mostany, J., Scharifker, B.R. (2016). Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. A review. J. Solid State Electrochem., 20, 875893. doi:10.1007/s10008-015-2984-7.
Krishna, M., Fraser, E. J., Wills, R. G. A., Walsh, F. C. (2018). Developments in soluble lead flow batteries and remaining challenges: An illustrated review. J. Energy Storage, 15, 69-90. doi: 10.1016/j.est.2017.10.020.
Shmychkova, O. B., Knysh, V. A., Luk’yanenko, T. V., Amadelli, R., Velichenko, A. B. (2018). Electrocatalytic processes on PbO2 electrodes at high anodic potentials. Surf. Engin. Applied Electrochem., 54(1), 38-46. doi: 10.3103/S1068375518010143.
Wu, W., Huang, Z.-H., Lim, T.-T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal., A, 480, 58-78. doi: 10.1016/j.apcata.2014.04.035.
Santos, J. E. L., de Moura, D. C., da Silva, D. R., Panizza, M., Martinez-Huitle, C. A. (2019). Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye. J. Solid State Electrochem., 23, 351360. doi: 10.1007/s10008-018-4134-5.
Kasian, O. I., Luk’yanenko, T. V., Demchenko, P. Yu., Gladyshevskii, R. E., Amadelli, R., Velichenko, A. B. (2013). Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt Electrochim. Acta, 109, 630–637. doi: 10.1016/j.electacta.2013.07.162.
Knysh, V., Luk’yanenko, T., Shmychkova, O., Amadelli, R., Velichenko, A. (2017). Electrodeposition of composite PbO2-TiO2 materials from colloidal methanesulfonate electrolytes, J. Solid State Electrochem., 21, 537-544. doi: 10.1007/s10008-016-3394-1.
Bi, Q., Guan, W., Gao, Y., Cui, Y., Ma, S., Xue, J. (2019). Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes, Electrochim. Acta, 306, 667-679. doi: 10.1016/j.electacta.2019.03.122.
Du, H., Duan, G., Vang, N., Liu, J., Tang, Y., Pang, R., Chen, Y., Wan, P. (2018). Fabrication of Ga2O3 –PbO2 electrode and its performance in electrochemical advanced oxidation processes, J. Solid State Electrochem., 22(12), 3799-3806. doi: 10.1007/s10008-018-4082-0.
Pereyra, J., Martinez, M. V., Barbero, C., Bruno, M., Acevedo, D. (2019). Hydrogel-graphene oxide nanocomposites as electrochemical platform to simultaneously determine dopamine in presence of ascorbic acid using an unmodified glassy carbon electrode, J. Compos. Sci., 3, 1-14. doi: 10.3390/jcs3010014.
Pouladvand, I., Asl, S. K., Hoseini, M. G., Rezvani, M. (2019). Characterization and electrochemical behavior of Ti/TiO2–RuO2–IrO2–SnO2 anodes prepared by sol–gel process, J. Sol-Gel Sci. Technol., 89, 553561. doi: 10.1007/s10971-018-4887-4.
Shmychkova, O., Luk'yanenko, T., Amadelli, R., Velichenko, A. (2014). Physico-chemical properties of PbO2-anodes doped with Sn4+ and complex ions. J. Electroanal. Chem., 717-718, 196-201. http://www.sciencedirect.com /science/article/pii/S1572665714000502.
Li, X., Xu, H., Yan, W. (2016). Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode, J. Alloy Compd., 718, 386–395. doi: 10.1016/j.jallcom.2017.05.147.
Shmychkova, O., Luk'yanenko, T., Amadelli, R., Velichenko, A. (2016). Electrodeposition of Ni2+-doped PbO2 and physicochemical properties of the coating, J. Electroanal. Chem., 774, 8894. doi: 10.1016/j.jelechem.2016.05.017.
Shmychkova, O., Luk’yanenko, T., Amadelli, R., Dmitrikova, L., Velichenko, A. (2017). The electrochemical oxidation of salicylic acid and its derivatives on modified PbO2-electrodes, Bull. Dnipr. Univ. Ser. Chem., 25 (2), 57–61. doi:10.15421/081706.
Walsh, F. C., Arenas, L. F., Ponce de Leon, C. (2018). Developments in electrode design: structure, decoration and applications of electrodes for electrochemical technology, J. Chem. Tech. Biotechnol., 93(11), 3073-3090. doi: 10.1002/jctb.5706.
Ratcliff, E. R., Hillier, A. C. (2007). Directed electrodeposition of polymer films using spatially controllable electric field gradients, Langmuir, 23, 9905–9910. doi: 10.1021/la700827w.
Darmanin, T., Nicolas, M., Guittard, F. (2008). Electrodeposited polymer films with both superhydrophobicity and superoleophilicity, Phys. Chem. Chem. Phys., 10, 4322-4326. doi: 10.1039/B804617D.
Timmermans, M. Y., Mattelaer, F., Moitzheim, S., Clerckx, N., Sepulveda, A., Deheryan, S., Detavernier, Ch., Vereecken, P. M. (2017), Electrodeposition of insulating poly(phenylene oxide) films with variable thickness, J. Appl. Polym. Sci., 134, 44533-44540. doi: 10.1002/app.44533.
Zhitomirsky, I. Petric, A. (2001). The electrodeposition of ceramic and organoceramic films for fuel cells, JOM, 53, 48-50. doi: 10.1007/s11837-001-0071-2.
Recent advances in complex functional materials: from design to application, L. E. La Porta, F. de Almeida (Eds.), 2017, Springer Int. Publ. doi: 10.1007/978-3-319-53898-3_9.
Tian, Q., Liu, H. (2015). Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates, Nanotechnology, 26, 175102–175108.
doi: 10.1088/0957-4484/26/17/175102.
Zhang, J., Quintana, A., Menendez, E.,Coll, M., Pellicer, E, Sort, J. (2018). Electrodeposited Ni-based magnetic mesoporous films as smart surfaces for atomic layer deposition: an "all-chemical" deposition approach toward 3D nanoengineered composite layers, ACS Appl. Mater. Interfaces, 10(17), 14877–14885. doi: 10.1021/acsami.8b01626.
Velichenko, A. B., Luk'yanenko, T. V., Nikolenko, N.V., Amadelli, R., Danilov, F. I. (2007). Nafion effect on the lead dioxide electrodeposition kinetics, Russ. J. Electrochem., 43, 118120. doi: 10.1134/S102319350701017X.
Shmychkova, O., Luk'yanenko, T., Velichenko, A., Meda, L., Amadelli, R. (2013). Bi-doped PbO2 anodes: electrodeposition and physico-chemical properties. Electrochim. Acta, 111, 332338.
http://www.sciencedirect.com/science/article/pii/S0013468613016125.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).