PHOTOELECTROCATALYTIC DEGRADATION OF AMINO-AZODYES BY TITANIUM DIOXIDE WITH SURFACE STATES OF Ti3+
DOI:
https://doi.org/10.15421/081914Keywords:
titanium dioxide, photoelectrocatalysis, degradation, amino dye.Abstract
The photoelectrocatalytic degradation process of a methyl orange amino acid dye (MO) under the influence of UV irradiation in a neutral salt electrolyte was studied using a catalyst - titanium dioxide of nanodispersed morphology. Anatase structure synthesized from a suspension of hydrated titanium dioxide TiO (OH)2. The activity of standard samples was also compared (P25 with an anatase / rutile phase ratio of 80:20, pure rutile). The phase composition, unit cell parameters, and dispersion of the samples were determined by X-ray diffraction method. The results of thermogravimetric measurements, porosity characteristics were analyzed. The presence of Ti3 + defects is shown for the synthesized sample, which may be the reason for a decreasing of the band gap semiconductor to 2.75 eV and increasing the anodic oxidation currents of MOs under UV irradiation at high scan rates (from 50 mV / s) and potentials up to 500 mV (CSE) in comparison with standard samples. The photoelectrocatalytic activity of the samples was determined by nanodispersity, crystallite morphology, pore size distribution. Photoelectrocatalytic activity varied symbatically with the concentration of Ti3 +, surface hydroxide groups.
References
Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature (London), 238, 37–38.
https://doi.org/10.1038/238037a0
Gilja, V., Novakovic, K., Travas-Sejdic, J., Hrnjak-Murgic, J.Z. (2017). Stability and Synergistic Effect of Polyaniline / TiO2 Photocatalysts in Degradation of Azo Dye in Wastewate. Nanomaterials, 412, 1–16.
https://doi.org/10.1038/238037a0
Keane, D.A., McGuigan, K.G., Ibáñez, P.F., Polo-López, M.I., Byrne, J.A., Dunlop, P.S., Pillai, S.C. (2014). Solar photocatalysis for water disinfection: materials and reactor design. Catal. Sci. Tech, 4, 1211–1226.
https://pubs.rsc.org/en/content/articlelanding/2014/cy/c4cy00006d/unauth#!divAbstract
Lyulyukin, M. N., Kolinko, P. A., Selishchev, D. S., Kozlov, D. V. (2018). Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: air purification analysis using a total hazard index. Applied Catalysis B: Environmental, 220, 386–396.
https://www.sciencedirect.com/science/article/abs/pii/S0926337317307579
Kim, Y., Hwang, H.M., Wang, L., Kim, I., Yoon, Y., Lee, H., (2016). Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep.6, 25212.
https://www.nature.com/articles/srep25212
Duan, Y., Liang, L., Lv, K., Li, Q., & Li, M. (2018). TiO2 faceted nanocrystals on the nanofibers: homojunction TiO2 based Z-scheme photocatalyst for air purification. Applied Surface Science, 456, 817–826.
https://www.sciencedirect.com/science/article/pii/S0169433218316957
Sokolskii, G. V., Ivanov, S. V., Ivanova, N. D., Boldyrev, E.I., Lobunets, T.F., Tomila, T. (2012). Doped manganese (IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions. J. Water Chem. Technol, 34, 227–233.
https://doi.org/10.3103/S1063455X12050037
Papagiannis, I., Koutsikou, G., Frontistis, Z., Konstantinou, I., Avgouropoulos, G., Mantzavinos, D., & Lianos, P. (2018). Photoelectrocatalytic vs. Photocatalytic Degradation of Organic Water Born Pollutants. Catalysts, 8(10), 455.
https://www.mdpi.com/2073-4344/8/10/455
Li, G., Nie, X., Chen, J., Jiang, Q., An, T., Wong, P.K., Yamashita, H. (2015). Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86, 17–24.
https://www.sciencedirect.com/science/article/abs/pii/S0043135415300373
Suhadolnik, L., Pohar, A., Likozar, B., Čeh, M. (2016). Mechanism and kinetics of phenol photocatalytic, electrocatalytic and photoelectrocatalytic degradation in a TiO2-nanotube fixed-bed microreactor. Chemical Engineering Journal, 303, 292–301.
https://www.sciencedirect.com/science/article/pii/S1385894716308348
Luna A., Dragoe, D., Wang, K. Beaunier, P. Kowalska, Е., Ohtani, В., Uribe, D. B., Valenzuela, M. A., Remita, H., Colbeau-Justin, C. (2017). Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Ab6sorption, Charge-Carrier Dynamics, and Quantum Efficiency. J. Phys. Chem. C., 121, 14302–14311.
https://doi.org/10.1021/acs.jpcc.7b01167
Zhigotskii, A. G., Rynda, E. F., Mishchuk, N. A., Kochkodan, V. M., Ragulya, A. V., Klimenko, V. P., Zagornyi, M. N. (2008). A study of the photocatalytic activity of titanium dioxide nanopowders. Russ. J. Appl. Chem., 8, 1942–1948.
https://doi.org/10.1134/S1070427208120021
Zahornyi, M. (2018). Functional nanocomposites based of titanium dioxide, Monogr. Lambert Academic Publishing, 157 p.
Zhigotskii, A.G., Zahornyi, M.N., Ragulya, A.V., Rynda, E.F., Mishchuk, N.A. (2009). [Photocatalytic properties nanocomposites based on polyaniline and dioxide titanium]. Nanostr. Mater., 3, 86–92 (in Russian).
http://dspace.nbuv.gov.ua/handle/123456789/62665
Kusior, A., Banas, J., Trenczek-Zajac, A., Zubrzycka, P., Micek-Ilnicka, A., & Radecka, M. (2018). Structural properties of TiO2 nanomaterials. Journal of Molecular Structure, 1157, 327–336.
https://www.sciencedirect.com/science/article/abs/pii/S0022286017316848
Arlt, T., Bermejo, M., Blanco, M. A., Gerward, L., Jiang, J. Z., Olsen, J. S., & Recio, J. M. (2000). High-pressure polymorphs of anatase TiO2. Physical Review B, 61(21), 14414.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.61.14414
Xin., Q. Xiaomin, Z., Zhihua., C. (2016). A new in vitro method to determine sun protection factor. Journal of the Society of Cosmetic Chemists, 67, 101–108.
http://journal.scconline.org/abstracts/cc2016/cc067n02/p00101-p00108.html
https://www.ncbi.nlm.nih.gov/pubmed/29394013
Xiong, L., Li, J., Yang, B., Yu, Y. (2012). Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic. Application Journal of Nanomaterials, Article ID 831524, 13 p.
http://dx.doi.org/10.1155/2012/831524
Tauc, J. (1968) Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37–46.
https://doi.org/10.1016/0025-5408(68)90023-8
Sokolsky, G., Ivanov, S., Ivanova, N. (2010) Cobalt Additives Influence on Phase Composition and Defect Structure of Manganese Dioxide Prepared from Fluorine Containing Electrolytes. Acta Physica Polonica A., 117(1), 86–90.
http://dx.doi.org/10.12693/APhysPolA.117.86
Zahornyi, M. N. (2017) Nanosized Powders as Reinforcement for Photoactive Composites (Overview). Powder Metall Met Ceram., 56, 130–147.
https://doi.org/10.1007/s11106-017-9880-x
Dai, K., Chen, H., Peng, T. Dingning, K., Huabing, Yi. (2007). Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 69, 1361–1367. https://doi.org/10.1016/j.chemosphere.2007.05.021
Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2(3), 73-81.
Kryukov, A. I., Stroyuk, A.L., Kuchmiy, S.A., Pokhodenko, V.D. (2013). [Nanophotocatalysis]. Kyiv: Academic Periodicals (in Russian).
Sokolsky, G., Zudina, L., Boldyrev, E., Miroshnikov, O., Gauk, N., & Kiporenko, O. (2018). ORR Electrocatalysis on Cr3+, Fe2+, Co2+-Doped Manganese (IV) Oxides. Acta Physica Polonica, A., 133(4).
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).