PHOTOELECTROCATALYTIC DEGRADATION OF AMINO-AZODYES BY TITANIUM DIOXIDE WITH SURFACE STATES OF Ti3+

Authors

  • Georgii V. Sokolsky NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Мaksym N. Zahornyi Frantsevich Institute for Problems in Materials Science NA, Ukraine
  • Тatyana F. Lobunets Institute for Problems in Materials Science,
  • Nadiya І. Tyschenko National Aviation University, Ukraine
  • Alexander. V. Shyrokov 3Institute for Problems in Materials Science, Ukraine
  • Аndrey V. Ragulya Frantsevich Institute for Problems in Materials Science NAS, Ukraine
  • Serhii V. Іvanov National Academy of Art and Culture Leaders,
  • Nadezhda V. Gayuk National Aviation University, Ukraine
  • Vladimir Е. Sokol’skii Taras Shevchenko Kyiv National University, Ukraine
  • Luiza V. Zudina Taras Shevchenko Kyiv National University, Ukraine

DOI:

https://doi.org/10.15421/081914

Keywords:

titanium dioxide, photoelectrocatalysis, degradation, amino dye.

Abstract

The photoelectrocatalytic degradation process of a methyl orange amino acid dye (MO) under the influence of UV irradiation in a neutral salt electrolyte was studied using a catalyst - titanium dioxide of nanodispersed morphology. Anatase structure synthesized from a suspension of hydrated titanium dioxide TiO (OH)2. The activity of standard samples was also compared (P25 with an anatase / rutile phase ratio of 80:20, pure rutile). The phase composition, unit cell parameters, and dispersion of the samples were determined by X-ray diffraction method. The results of thermogravimetric measurements, porosity characteristics were analyzed. The presence of Ti3 + defects is shown for the synthesized sample, which may be the reason for a decreasing of the band gap semiconductor to 2.75 eV and increasing the anodic oxidation currents of MOs under UV irradiation at high scan rates (from 50 mV / s) and potentials up to 500 mV (CSE) in comparison with standard samples. The photoelectrocatalytic activity of the samples was determined by nanodispersity, crystallite morphology, pore size distribution. Photoelectrocatalytic activity varied symbatically with the concentration of Ti3 +, surface hydroxide groups.

Author Biography

Georgii V. Sokolsky, NTUU "Igor Sikorsky Kyiv Polytechnic Institute"

physical chemistry department

professor

References

Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature (London), 238, 37–38.

https://doi.org/10.1038/238037a0

Gilja, V., Novakovic, K., Travas-Sejdic, J., Hrnjak-Murgic, J.Z. (2017). Stability and Synergistic Effect of Polyaniline / TiO2 Photocatalysts in Degradation of Azo Dye in Wastewate. Nanomaterials, 412, 1–16.

https://doi.org/10.1038/238037a0

Keane, D.A., McGuigan, K.G., Ibáñez, P.F., Polo-López, M.I., Byrne, J.A., Dunlop, P.S., Pillai, S.C. (2014). Solar photocatalysis for water disinfection: materials and reactor design. Catal. Sci. Tech, 4, 1211–1226.

https://pubs.rsc.org/en/content/articlelanding/2014/cy/c4cy00006d/unauth#!divAbstract

Lyulyukin, M. N., Kolinko, P. A., Selishchev, D. S., Kozlov, D. V. (2018). Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: air purification analysis using a total hazard index. Applied Catalysis B: Environmental, 220, 386–396.

https://www.sciencedirect.com/science/article/abs/pii/S0926337317307579

Kim, Y., Hwang, H.M., Wang, L., Kim, I., Yoon, Y., Lee, H., (2016). Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep.6, 25212.

https://www.nature.com/articles/srep25212

Duan, Y., Liang, L., Lv, K., Li, Q., & Li, M. (2018). TiO2 faceted nanocrystals on the nanofibers: homojunction TiO2 based Z-scheme photocatalyst for air purification. Applied Surface Science, 456, 817–826.

https://www.sciencedirect.com/science/article/pii/S0169433218316957

Sokolskii, G. V., Ivanov, S. V., Ivanova, N. D., Boldyrev, E.I., Lobunets, T.F., Tomila, T. (2012). Doped manganese (IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions. J. Water Chem. Technol, 34, 227–233.

https://doi.org/10.3103/S1063455X12050037

Papagiannis, I., Koutsikou, G., Frontistis, Z., Konstantinou, I., Avgouropoulos, G., Mantzavinos, D., & Lianos, P. (2018). Photoelectrocatalytic vs. Photocatalytic Degradation of Organic Water Born Pollutants. Catalysts, 8(10), 455.

https://www.mdpi.com/2073-4344/8/10/455

Li, G., Nie, X., Chen, J., Jiang, Q., An, T., Wong, P.K., Yamashita, H. (2015). Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86, 17–24.

https://www.sciencedirect.com/science/article/abs/pii/S0043135415300373

Suhadolnik, L., Pohar, A., Likozar, B., Čeh, M. (2016). Mechanism and kinetics of phenol photocatalytic, electrocatalytic and photoelectrocatalytic degradation in a TiO2-nanotube fixed-bed microreactor. Chemical Engineering Journal, 303, 292–301.

https://www.sciencedirect.com/science/article/pii/S1385894716308348

Luna A., Dragoe, D., Wang, K. Beaunier, P. Kowalska, Е., Ohtani, В., Uribe, D. B., Valenzuela, M. A., Remita, H., Colbeau-Justin, C. (2017). Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Ab6sorption, Charge-Carrier Dynamics, and Quantum Efficiency. J. Phys. Chem. C., 121, 14302–14311.

https://doi.org/10.1021/acs.jpcc.7b01167

Zhigotskii, A. G., Rynda, E. F., Mishchuk, N. A., Kochkodan, V. M., Ragulya, A. V., Klimenko, V. P., Zagornyi, M. N. (2008). A study of the photocatalytic activity of titanium dioxide nanopowders. Russ. J. Appl. Chem., 8, 1942–1948.

https://doi.org/10.1134/S1070427208120021

Zahornyi, M. (2018). Functional nanocomposites based of titanium dioxide, Monogr. Lambert Academic Publishing, 157 p.

Zhigotskii, A.G., Zahornyi, M.N., Ragulya, A.V., Rynda, E.F., Mishchuk, N.A. (2009). [Photocatalytic properties nanocomposites based on polyaniline and dioxide titanium]. Nanostr. Mater., 3, 86–92 (in Russian).

http://dspace.nbuv.gov.ua/handle/123456789/62665

Kusior, A., Banas, J., Trenczek-Zajac, A., Zubrzycka, P., Micek-Ilnicka, A., & Radecka, M. (2018). Structural properties of TiO2 nanomaterials. Journal of Molecular Structure, 1157, 327–336.

https://www.sciencedirect.com/science/article/abs/pii/S0022286017316848

Arlt, T., Bermejo, M., Blanco, M. A., Gerward, L., Jiang, J. Z., Olsen, J. S., & Recio, J. M. (2000). High-pressure polymorphs of anatase TiO2. Physical Review B, 61(21), 14414.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.61.14414

Xin., Q. Xiaomin, Z., Zhihua., C. (2016). A new in vitro method to determine sun protection factor. Journal of the Society of Cosmetic Chemists, 67, 101–108.

http://journal.scconline.org/abstracts/cc2016/cc067n02/p00101-p00108.html

https://www.ncbi.nlm.nih.gov/pubmed/29394013

Xiong, L., Li, J., Yang, B., Yu, Y. (2012). Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic. Application Journal of Nanomaterials, Article ID 831524, 13 p.

http://dx.doi.org/10.1155/2012/831524

Tauc, J. (1968) Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37–46.

https://doi.org/10.1016/0025-5408(68)90023-8

Sokolsky, G., Ivanov, S., Ivanova, N. (2010) Cobalt Additives Influence on Phase Composition and Defect Structure of Manganese Dioxide Prepared from Fluorine Containing Electrolytes. Acta Physica Polonica A., 117(1), 86–90.

http://dx.doi.org/10.12693/APhysPolA.117.86

Zahornyi, M. N. (2017) Nanosized Powders as Reinforcement for Photoactive Composites (Overview). Powder Metall Met Ceram., 56, 130–147.

https://doi.org/10.1007/s11106-017-9880-x

Dai, K., Chen, H., Peng, T. Dingning, K., Huabing, Yi. (2007). Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 69, 1361–1367. https://doi.org/10.1016/j.chemosphere.2007.05.021

Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2(3), 73-81.

Kryukov, A. I., Stroyuk, A.L., Kuchmiy, S.A., Pokhodenko, V.D. (2013). [Nanophotocatalysis]. Kyiv: Academic Periodicals (in Russian).

Sokolsky, G., Zudina, L., Boldyrev, E., Miroshnikov, O., Gauk, N., & Kiporenko, O. (2018). ORR Electrocatalysis on Cr3+, Fe2+, Co2+-Doped Manganese (IV) Oxides. Acta Physica Polonica, A., 133(4).

Published

2019-10-31

Issue

Section

Physical and inorganic chemistry