• Georgii V. Sokolsky NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Мaksym N. Zahornyi Frantsevich Institute for Problems in Materials Science NA, Ukraine
  • Тatyana F. Lobunets Institute for Problems in Materials Science,
  • Nadiya І. Tyschenko National Aviation University, Ukraine
  • Alexander. V. Shyrokov 3Institute for Problems in Materials Science, Ukraine
  • Аndrey V. Ragulya Frantsevich Institute for Problems in Materials Science NAS, Ukraine
  • Serhii V. Іvanov National Academy of Art and Culture Leaders,
  • Nadezhda V. Gayuk National Aviation University, Ukraine
  • Vladimir Е. Sokol’skii Taras Shevchenko Kyiv National University, Ukraine
  • Luiza V. Zudina Taras Shevchenko Kyiv National University, Ukraine



titanium dioxide, photoelectrocatalysis, degradation, amino dye.


The photoelectrocatalytic degradation process of a methyl orange amino acid dye (MO) under the influence of UV irradiation in a neutral salt electrolyte was studied using a catalyst - titanium dioxide of nanodispersed morphology. Anatase structure synthesized from a suspension of hydrated titanium dioxide TiO (OH)2. The activity of standard samples was also compared (P25 with an anatase / rutile phase ratio of 80:20, pure rutile). The phase composition, unit cell parameters, and dispersion of the samples were determined by X-ray diffraction method. The results of thermogravimetric measurements, porosity characteristics were analyzed. The presence of Ti3 + defects is shown for the synthesized sample, which may be the reason for a decreasing of the band gap semiconductor to 2.75 eV and increasing the anodic oxidation currents of MOs under UV irradiation at high scan rates (from 50 mV / s) and potentials up to 500 mV (CSE) in comparison with standard samples. The photoelectrocatalytic activity of the samples was determined by nanodispersity, crystallite morphology, pore size distribution. Photoelectrocatalytic activity varied symbatically with the concentration of Ti3 +, surface hydroxide groups.

Author Biography

Georgii V. Sokolsky, NTUU "Igor Sikorsky Kyiv Polytechnic Institute"

physical chemistry department



Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature (London), 238, 37–38.

Gilja, V., Novakovic, K., Travas-Sejdic, J., Hrnjak-Murgic, J.Z. (2017). Stability and Synergistic Effect of Polyaniline / TiO2 Photocatalysts in Degradation of Azo Dye in Wastewate. Nanomaterials, 412, 1–16.

Keane, D.A., McGuigan, K.G., Ibáñez, P.F., Polo-López, M.I., Byrne, J.A., Dunlop, P.S., Pillai, S.C. (2014). Solar photocatalysis for water disinfection: materials and reactor design. Catal. Sci. Tech, 4, 1211–1226.!divAbstract

Lyulyukin, M. N., Kolinko, P. A., Selishchev, D. S., Kozlov, D. V. (2018). Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: air purification analysis using a total hazard index. Applied Catalysis B: Environmental, 220, 386–396.

Kim, Y., Hwang, H.M., Wang, L., Kim, I., Yoon, Y., Lee, H., (2016). Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci. Rep.6, 25212.

Duan, Y., Liang, L., Lv, K., Li, Q., & Li, M. (2018). TiO2 faceted nanocrystals on the nanofibers: homojunction TiO2 based Z-scheme photocatalyst for air purification. Applied Surface Science, 456, 817–826.

Sokolskii, G. V., Ivanov, S. V., Ivanova, N. D., Boldyrev, E.I., Lobunets, T.F., Tomila, T. (2012). Doped manganese (IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions. J. Water Chem. Technol, 34, 227–233.

Papagiannis, I., Koutsikou, G., Frontistis, Z., Konstantinou, I., Avgouropoulos, G., Mantzavinos, D., & Lianos, P. (2018). Photoelectrocatalytic vs. Photocatalytic Degradation of Organic Water Born Pollutants. Catalysts, 8(10), 455.

Li, G., Nie, X., Chen, J., Jiang, Q., An, T., Wong, P.K., Yamashita, H. (2015). Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86, 17–24.

Suhadolnik, L., Pohar, A., Likozar, B., Čeh, M. (2016). Mechanism and kinetics of phenol photocatalytic, electrocatalytic and photoelectrocatalytic degradation in a TiO2-nanotube fixed-bed microreactor. Chemical Engineering Journal, 303, 292–301.

Luna A., Dragoe, D., Wang, K. Beaunier, P. Kowalska, Е., Ohtani, В., Uribe, D. B., Valenzuela, M. A., Remita, H., Colbeau-Justin, C. (2017). Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Ab6sorption, Charge-Carrier Dynamics, and Quantum Efficiency. J. Phys. Chem. C., 121, 14302–14311.

Zhigotskii, A. G., Rynda, E. F., Mishchuk, N. A., Kochkodan, V. M., Ragulya, A. V., Klimenko, V. P., Zagornyi, M. N. (2008). A study of the photocatalytic activity of titanium dioxide nanopowders. Russ. J. Appl. Chem., 8, 1942–1948.

Zahornyi, M. (2018). Functional nanocomposites based of titanium dioxide, Monogr. Lambert Academic Publishing, 157 p.

Zhigotskii, A.G., Zahornyi, M.N., Ragulya, A.V., Rynda, E.F., Mishchuk, N.A. (2009). [Photocatalytic properties nanocomposites based on polyaniline and dioxide titanium]. Nanostr. Mater., 3, 86–92 (in Russian).

Kusior, A., Banas, J., Trenczek-Zajac, A., Zubrzycka, P., Micek-Ilnicka, A., & Radecka, M. (2018). Structural properties of TiO2 nanomaterials. Journal of Molecular Structure, 1157, 327–336.

Arlt, T., Bermejo, M., Blanco, M. A., Gerward, L., Jiang, J. Z., Olsen, J. S., & Recio, J. M. (2000). High-pressure polymorphs of anatase TiO2. Physical Review B, 61(21), 14414.

Xin., Q. Xiaomin, Z., Zhihua., C. (2016). A new in vitro method to determine sun protection factor. Journal of the Society of Cosmetic Chemists, 67, 101–108.

Xiong, L., Li, J., Yang, B., Yu, Y. (2012). Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic. Application Journal of Nanomaterials, Article ID 831524, 13 p.

Tauc, J. (1968) Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37–46.

Sokolsky, G., Ivanov, S., Ivanova, N. (2010) Cobalt Additives Influence on Phase Composition and Defect Structure of Manganese Dioxide Prepared from Fluorine Containing Electrolytes. Acta Physica Polonica A., 117(1), 86–90.

Zahornyi, M. N. (2017) Nanosized Powders as Reinforcement for Photoactive Composites (Overview). Powder Metall Met Ceram., 56, 130–147.

Dai, K., Chen, H., Peng, T. Dingning, K., Huabing, Yi. (2007). Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 69, 1361–1367.

Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2(3), 73-81.

Kryukov, A. I., Stroyuk, A.L., Kuchmiy, S.A., Pokhodenko, V.D. (2013). [Nanophotocatalysis]. Kyiv: Academic Periodicals (in Russian).

Sokolsky, G., Zudina, L., Boldyrev, E., Miroshnikov, O., Gauk, N., & Kiporenko, O. (2018). ORR Electrocatalysis on Cr3+, Fe2+, Co2+-Doped Manganese (IV) Oxides. Acta Physica Polonica, A., 133(4).





Physical and inorganic chemistry