INTERACTION OF COMPLEX COMPOUNDS OF 1,3,7 – TRIMETHYLXANTHINE WITH ANIONS OF POLYOXOMETALATES OF MOLYBDENUM AND TUNGSTEN WITH ARTIFICIAL RADICAL

Authors

  • Olha S. Panteleieva Ukrainian State University of Chemical Technology, Ukraine
  • Kateryna A. Plyasovskaya Oles Honchar Dnipro National University, Ukraine
  • Olexandr V. Shtemenko Ukrainian State University of Chemical Technology, Ukraine

DOI:

https://doi.org/10.15421/081915

Keywords:

polyoxometalates, 1, 3, 5-triphenyl-verdazyl radical, DPPH-radical, 7-trimethylxanthine, complex compounds, anti-radical action.

Abstract

In the course of research on interaction of artificial radicals of triphenyl-verdazyl (TPV) and diphenyl picryl hydrazyl (DPPH) with complex compounds of 1,3,7-trimethylxanthine with anions of polyoxometalates of molybdenum and tungsten, an anti-radical action of the coordination compounds mentioned above was proved. During the interaction of these compounds with the TPV-radical, deactivation of the latter occurs. This is evidenced, firstly, by a decrease followed by vanishing of characteristic absorption maximum in the visible area of spectroscopy for the radical form – 720 nm and, secondly, by disappearance on і,Е-curves of maxima of TPV-radical transition into the anionic form. Unequal decrease in absorption maxima of the cationic and anionic forms of TPV can give evidence of complicated nature of the interaction of the TPV-radical with the complex (Hcaf)3[PМе12O40]×6H2O (where Ме = Мо, W). According to the spectroscopy data, compounds (Hcaf)3[PМо12O40]×6H2O showed greater anti-radical action compared to (Hcaf)3[PW 12O40]×6H2O. That is, the antiradical effect of the complex compounds (Hcaf)3[PМо12O40]×6H2O, (Hcaf)3[PW 12O40]×6H2O was proved.

References

Panteleieva, O. S., Shtemenko, A. V., Domasevitch, K. V (2018). Face-to-face stacking of caffeinium and [PMVI12O40]3− ions: A synthon for crystal engineering with purine bases. Inorganic Chemistry Communications. 94, 122.

https://doi.org/10.1016/j.inoche.2018.06.014

Trokhymovych, A. A., Kyshko, M. M., Slyvka, Ya. I., Hanych, O. T. (2011). [Free-radical peroxidation and antioxidant system of cardiovascular patnology]. Naukovyi visnyk Uzhhorodskoho universytetu, Ser. Medytsyna. 94(2), 361–363. (in Ukrainian).

Nakanishi, I, Kawashima, T., Ohkubo, K., Waki, T., Kamada, T., Ozawa, T., Matsumotoa, K., Fukuzumi, S. (2014) Disproportionation of a 2,2-diphenyl-1- picrylhydrazyl radical as a model of reactive oxygen species catalysed by Lewis and/or Bronsted acids Chem. Commun. 50, 814–816.

https://doi.org/110.1039/c3cc47819j

Mukherjee, H. (1965). Treatment of cancer of the intestinal tract with a complex compound of phosphotungstic phosphomolybdic acids and caffeine J. Indian Med. Assoc. 44, 477–479.

Tretiak, S. Yu. (2009) [Interaction of dinuclear clusters of rhenium(III) that contain metal-metal bond of higher multiplication with free radicals]. (Unpublished doctoral dissertation). Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine (in Russian).

Dehtiarev L. S., Maletyn Yu. A., Stetsenko A. A. (1981). [On the disproportionation of verdazyl radicals in the presence of zinc and cadmium ions]. Zhurn. Obshchei khymyy. 51(10), 2387–2388 (in Russian).

Sharma, N. K., Ameta, R. K., Singh, M. (2016). Spectrophotometric and physicochemical studies of newly synthesized anticancer Pt(IV) complexes and their interactions with CT-DNA Journal of Molecular Liquids. 222, 752–761.

http://dx.doi.org/10.1016/j.molliq.2016.07.1010167-7322

Panteleieva, O. S., Shtemenko, O. V. (2019). [Synthesis, structure and antiradical action of complex compounds 1,3,7 - trimethylxanthinium with anions of molybdenum and tungsten polyoxometalates]. Zbirnyk naukovykh prats. XVII Naukova konf. «Lvivski khimichni chytannia - 2019», 11 (in Ukrainian).

Totta, X., Hatzidimitriou, A. G., Papadopoulos, A. N., (2016). Psomas G. Nickel (II) complexes of the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA Polyhedron. 117, 172–183.

http://dx.doi.org/10.1016/j.poly.2016.05.050

Panteleieva, O. S, Domasevych, K. V., O. Shtemenko, O. V. (2018). [Synthesis of complex compounds 1,3,7 - trimethylxanthinium with anions containing clusters of dyrene (III) and other bioactive substances]. XX Ukr. konf. z neorh. khim. za uchastiu zakordonnykh uchenykh., 44 (in Ukrainian).

Kedare, S. B., Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1

Katritzky, A. R., Belyanov, S. A (1997). A direct one – step preparation of triarylverdazylium salts from the correspording triarylformazans. Syntesis. 1, 17–19.

Tretiak, S.Y, Holychenko, A. A., Shtemenko, A.V. (2016). [The interaction of dpph-radical with cistetrachlorodi-µ-carboxylates of dirhenium(III)] Visnyk ONU, Ser. Khimiia, 21, (3) 59, 51–57 (in Russian).

https://doi.org/10.18524/2304-47.2016.3(59).79588

Velychko, E. V., Pliasovskaia, E. A., Tretiak, S. Yu., Holychenko A. A., Shtemenko A. V. (2016). [Interaction of cis-tetrachloride-µ-adamantylcarboxylates of dirhenium(ІІІ) with 1, 3, 5, triphenylverdazyl radical in acetonitrile]. Voprosы khymyy y khymycheskoi tekhnolohyy. 4(108), 4–7 (in Russian).

Holychenko, A. A. Tretiak, S. Yu., Shtemenko, A. V. (2016). [Antiradical activity of cis-tetrachloride-µ-carboxylates of dirhenium(ІІІ)]. Voprosы khymyy y khymycheskoi tekhnolohyy. 2(106), 21–25. (in Ukrainian).

Velychko, E. V., Pliasovskaia, E. A., Holychenko, A. A., Shtemenko, A. V. (2017). [Voltammetric study of the system tetragalogenodi cis-μ-karboksilatodireny (III) - 1,3,5-trifenilver dazilny radical in acetonitrile]. Visnyk ONU, Ser. Khimiia. 22, (3) 63, 16–23 (in Russian).

https://doi.org/10.18524/2304-7.2017.3(63).109385.

Cho, J. M., Song, C. E., Moon, S.-J., Shin, W. S., Hong, S., Kim, S. H., Cho, S., Lee, J.-K. (2018). Scavenging of galvinoxyl spin 1/2 radicals in the processing of organic spintronics. Organic Electronics. 55, 21–25.

https://doi.org/10.1016/j.orgel.2018.01.002

Lampp, L., Azarkh, M., Drescher, M., Imming, P. (2019) Galvinoxyl radicals: Synthesis of new derivatives, determination of low oxygen contents, and stability studies. Tetrahedron. 75, 2737–2747.

https://doi.org/10.1016/j.tet.2019.03.051

Roberts, J. G., Voinov, M. A., Schmidt, A. C., Smirnova, T. I., Sombers, L. A. (2016).The Hydroxyl Radical is a Critical Intermediate in the Voltammetric Detection of Hydrogen Peroxide J. Am. Chem. Soc. 138, 2516–2519. https://doi.org/10.1021/jacs.6b08856

Kulikov, V., Meyer, G. (2014). Polyoxotungstates in molecular boxes of purine bases. Crystals. 4 , 64–73. https://doi.org/10.3390/cryst4010064

Nehlig, A., Dava,l J. -L., Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research Reviews. 17(2), 139–170. https://doi.org/10.1016/0165-0173(92)90012-B

Cappelletti, S., Daria, P., Sani, G., Aromatario, M. (2015). Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug. Curr Neuropharmacol. 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655

Augusto da Silva, L., Wouk, J., V. Müller, R. Weber, C. da Luz Eltchechem, P. de Almeida, J. Cesar Lacerda Martins, C. Ricardo Maneck Malfatti, Osiecki, R. (2017). Mechanisms and biological effects of Caffeine on substrate metabolism homeostasis: A systematic review Luiz. Journal of Applied Pharmaceutical Science. 7(6), 215–221. https://doi.org/10.7324/JAPS.2017.70632ISSN 2231-3354

Lipunova, G. N., Fedorchenko, T. G., Chupakhin, O. N. (2013). Verdazyls: synthesis, properties, application. Russ. Chemi. Rev. 82. (8), 701–734.

https://doi.org/10.1070/RC2013v082n08ABEH004341

Gilroy, J. B., McKinnon, St. D. J., Koivisto, B. D., Hicks, R. G. (2007). Electrochemical Studies of Verdazyl Radicals. Org. Lett. 23(9), 4837–4840.

https://dx.doi.org/10.1021/o1702163a

Published

2019-11-28

Issue

Section

Physical and inorganic chemistry