FEATURES OF (dπ-pπ)-BINDING OF Cu(I) IONS WITH ACRYLIC, MALEIC AND FUMARIC ACIDS IN AQUEOUS SOLUTION

Authors

DOI:

https://doi.org/10.15421/081916

Keywords:

π-комплекси Cu , ненасичені органічні кислоти, молекули H2O, квантово-хімічне моделювання, енергія зв’язків

Abstract

The conducted quantum-chemical modeling (Gaussian 09, B3LYP functional) of competing interaction with Cu+-ions of water molecules and unsaturated organic acids: acrylic (HA), maleic (H2M), fumaric (H2F). As a result found that in the presence of the molecular form and part of the deprotonated forms (HM, HF, M2–, F2–), the Cu+-ion is able to attach to three water molecules. In the presence of anions A to two. Only the two complexes ([Cu+(H2O)2(H2F)] and [Cu+(H2O)2(F2–]) in the (dπ-pπ)-interaction participate with both Carbon atoms of the (C=C)- fragment unsaturated acid. In other cases, the π-bond with the central atom forms one Carbon atom, despite the fact that the interatomic distances (Cu+–C1) and (Cu+–C2) are close to each other and practically coincide with the corresponding values found experimentally for such compounds. Water molecules act synergistically on the π-bond energy in [Cu+(H2O)n(L)] complexes. In some cases, the Eb(Cu+–C1) growth effect reaches 40 %. Herewith, the water molecules offset the difference in the π-bond energy due to the number of carboxyl groups and the geometry of the acid. Furthermore, the mutual influence of σ-bonds (H2O–Cu+) in π-complexes is antagonistic. Each subsequent water molecule reduces the binding energy of the previous one by at least 20 %.

References

Demircan, C. A., Bozkaya, U. (2017). Transition metal cation-π interactions: complexes formed by Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ binding with benzene molecules. The Journal of Physical Chemistry A, 121(34), 6500–6509. https://doi.org/10.1021/acs.jpca.7b05759

Yanchak, А. I., Slyvka, Y. I., Kinzhybalo, V. V., Bednarchuk, T. J., Myskiv, M. G. (2019). The First Copper(I) Halide π-Complexes with Allyl Derivatives of Urea and Parabanic Acid.Voprosy khimii i khimicheskoi tekhnologii, 3, 67–73. https://doi.org/10.32434/0321-4095-2019-124-3-67-73

Slyvka, Y. (2019). π-Complexes Copper(I) Chloride and Copper(I) Perchlorate with 2-allylthio-5-methyl-1,3,4-thiadiazole: Synthesis and Crystalline Structure. Bulletin of the University of Lviv. The series is chemical, 1(60),155–162. http://dx.doi.org/10.30970/vch.6001.155

Brathwaite, A. D., Ward, T. B., Walters, R. S., Duncan, M. A. (2015). Cation−π and CH−π Interactions in the Coordination and Solvation of Cu+(acetylene)n Complexes. The Journal of Physical Chemistry A, 119(22), 5658–5667. https://doi.org/10.1021/acs.jpca.5b03360

Bissinger, P., Steffen, A., Vargas, A., Dewhurst, R. D., Damme, A., Braunschweig, H. (2015). Unexpected Luminescence Behavior of Coinage Metal π‐Diborene Complexes.Angewandte Chemie International Edition,54(14), 4362–4366.https://doi.org/10.1002/anie.201408993

Lukyanov, М., Slyvka, Y., Ardan, B., Myskiv, M. G. (2018). Synthesis and crystalline structure of the copper(I) sulfate with 2-(N-allyl)-amino-5-methyl-1,3,4-thiadiazole composition [Cu2(C6H10N3S2)2(NH2SO3)2].Bulletin of the University of Lviv. The series is chemical, 59(1), 157–163.

Slyvka, Y. I. (2015). Structural features of CuCl and Cu2SiF6π-complexes with 2-allylamino-5-phenyl-1,3,4-thiadiazole of the composition [CuCl(C11H11N3S)] and [Cu(C11H11N3 S)(H2O)(CH3CN)]2SiF6 · 2CH3CN. Journal of Structural Chemistry, 56(6), 1118–1123. https://doi.org/10.1134/S0022476615060141

Slyvka, Y. I., Ardan, B. R., Mys’kiv, M. G. (2018). Copper(I) Chloride π-Complexes with 2,5-Bis (Allylthio)-1,3,4-Thiadiazole: Synthesis and Structural Features. Journal of Structural Chemistry, 59(2), 388–394. https://doi.org/10.1134/S0022476618020191

Monchak, M., Goreshnik, E., Myskiv, M. G. (2009). Synthesis and crystalline structure of the π-complex [(N,N,N,N',N',N'-hexaalylethylenediamine)(Cu2Br4)]. Bulletin of the Lions. un-chemical series, 50, 36–43. https://doi.org/10.15421/081514

Vargalyuk, V. F., Polonskyy, V. A., Kramskaya, O. S., Shchukin, A. I. (2016). The effect of acrylonitrile on electrode processes involving copper cations. Bulletin of Dnipropetrovsk University. Series: Chemistry, 23(2), 22–26. https://doi.org/10.15421/081514

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Stets, N. V., Shchukin, A. I. (2014). Microbiological properties of copper-based dispersion obtained by cathode precipitation in the presence of acrylic acid. Bulletin of Dnipropetrovsk University. Series: Chemistry, 22(2),

–51. https://doi.org/10.15421/081420

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Shchukin, A. І. (2015). Electrodeposition of copper in the presence of π-binding organic compounds. Modern problems of electrochemistry, 234–235.

Osokin, E. S., Vargalyuk, V.F., Polonskyy, V.A. (2019). Features of dπ-pπ-bonding of some acrylic and maleic acid derivatives with low-oxidation copper atoms. Abs. of the II International Conference of Students, Graduate Students and Young Scientists «Current Chemical Problems», 30.

Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Nakatsuji, H. (2009). Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT, 200(28).

Wachters, A. J. (1970). Gaussian basis set for molecular wavefunctions containing third‐row atoms.The Journal of Chemical Physics, 52(3), 1033–1036. https://doi.org/10.1063/1.1673095

Krishnan, R. B. J. S., Binkley, J. S., Seeger, R., Pople, J. A. (1980). Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions.The Journal of Chemical Physics, 72(1), 650–654. https://doi.org/10.1063/1.438955

Frisch, M. J., Pople, J. A., Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets.The Journal of chemical physics,80(7), 3265–3269. https://doi.org/10.1063/1.447079

Becke, A. D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange.Indian Journal of Pure & Applied Physics,98(7), 5648–5656. https://doi.org/10.1063/1.464913

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical review B,37(2), 785.

https://doi.org/10.1103/PhysRevB.37.785

Younis, A. K., Ghayad, I. M., Kandemirli, F. (2019). Quantum Chemical Study on the Corrosion Inhibition of Copper Using Some Thiosemicarbazides and Tetrazoles. Quantum, 11(2), 28–35.https://doi.org/10.7176/CMR/11-2-04

Barone, V., Cossi, M., Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model.Journal of Computational Chemistry, 19(4), 404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum mechanical continuum solvation models.Chemicalreviews, 105(8), 2999–3094. https://doi.org/10.1021/cr9904009

Vargaljuk, V., Okovytyy, S., Polonskyy, V., Kramska, O., Shchukin, A., Leszczynski, J. (2017). Copper Crystallization from Aqueous Solution: Initiation and Evolution of the Polynuclear Clusters.Journal of Cluster Science, 28(5), 2517–2528. https://doi.org/10.1007/s10876-017-1239-4

König, F. B., Schönbohm, J., Bayles, D. (2001). AIM2000-a program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545–559.

Karaush, N. N., Baryshnikov, G. V., Minaeva, V. A., & Minaev, B. F. (2015). A DFT and QTAIM study of the novel d-block metal complexes with tetraoxa [8] circulene-based ligands.New Journal of Chemistry,39(10), 7815–7821. https://doi.org/10.1039/C5NJ01255D

Espinosa, E., Molins, E., Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities.Chemical Physics Letters, 285(3/4), 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

Downloads

Published

2020-01-17

Issue

Section

Physical and inorganic chemistry