OPERATING REGIME OF ADSORPTIVE HEAT-MOISTURE REGENERATORS BASED ON COMPOSITES ‘SILICA GEL - SODIUM SULPHATE’ AND ‘SILICA GEL – SODIUM ACETATE’

Authors

  • Elena Belyanovskaya State Higher Education Institution 'Ukrainian State University of Chemical Engineering', Ukraine
  • Roman Lytovchenko State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Kostyantyn Sukhyyy State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Oleksandr Yeremin National Academy of Metallurgy of Ukraine,
  • Irina Sukha State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Elena Prokopenko National Academy of Metallurgy of Ukraine,

DOI:

https://doi.org/10.15421/081917

Keywords:

adsorptive heat-moisture regenerator, temperature efficiency factor, maximal adsorption, composite adsorbent.

Abstract

Operational parameters of adsorptive regenerator of low-potential heat and moisture based on composite adsorbents  «silica gel - sodium sulphate» and «silica gel  – sodium acetate» synthesized by sol – gel method were studied. Correlation of the parameters such as airflow rate, switching period, and temperatures of internal and external air, temperature efficiency factor was stated. Purposeful changing the temperature efficiency factor in rather wide ranges is shown when the switching period and airflow rate variated. Maximal values of temperature efficiency factors are stated at the airflow rates and switching over time of at most 0.22 – 0.32 m/s and 5 – 10 min., when composite «silica gel – sodium sulphate» used. Regenerators based on composites «silica gel – sodium sulphate» are stated to surpass devices based on «silica gel – sodium acetate» by at least 9 – 10 % of temperature efficiency factors. Efficiency of adsorptive regenerators is revealed to be affected by the meteorological conditions. Maximal values of temperature efficiency factor of regenerators based on composites «silica gel – sodium sulphate» are corresponded with the external air temperature of –5 – 0 °C and internal air temperature of 15 – 16 °C.  

References

2012 ASHRAE HANDBOOK Heating, Ventilating, And Air-Conditioning SYSTEMS AND EQUIPMENT (2012) Athlanta, USA: ASHRAE

Ananyev, V.А., Baluyeva, L.N., Galperin, А.D., Gorodov A.K., Yereomin M.Y., Zvyagintseva S.M., Murashko V.P., Sedykh I.V. (2001). [Ventilation and conditioning systems: theory and practice]. Мoskow, Russia: Yevroklimat, (in Russian)

Kolomiyets O.V. (2015) Pidvyshchennya efektyvnosti adsorbtsiynykh peretvoryuvachiv teplovoyi enerhiyi za rakhunok vykorystannya novykh kompozytnykh sorbentiv (Cand. thech. sciences). Retrieved from Dissertations and Theses database. (UMI No. РА430247)

Elhelw, M. (2016) Analysis of energy management for heating, ventilating and air-conditioning systems. Alexandria Engineering Journal. 55(2), 22–30 http://dx.doi.org/10.1016/j.aej.2016.02.021

Mehta, J., Badrakia, H.S. (2014). Fresh air dehumidification in a novel liquid desiccant-air contacting device. IOSR Journal of Mechanical and Civil Engineering. 11, 79–82.

https://doi.org/10.9790/1684-11447982.

Aman, J., Ting, D.S.-K, Henshaw, P. (2014): Residential solar air conditioning: Energy and exergy analyses of an ammonia – water absorption cooling system. Appl. Thermal Eng. 62, 424–432. https://doi.org/10.1016/j.applthermaleng.2013.10.006

Kim, M., Park, J., Sung, M., Choi, A., Jeong, J. (2014): Annual operating energy savings of liquid desiccant and evaporative-cooling assisted 100% outdoor air system, Energy Build. 76, 538–550.

https://doi.org/10.1016/j.enbuild.2014.03.006

Buker, M., Riffat, S. (2015): Recent developments in solar assisted liquid desiccant evaporative cooling technology—a review, Energy Build. 96, 95–108. https://doi.org/10.1016/j.enbuild.2015.03.020

Kim, M., Park, J., Jeong, J. (2015): Simplified model for packed-bed tower regenerator in a liquid desiccant system. Appl. Therm. Eng. 89(5), 717–726. https://doi.org/10.1016/j.applthermaleng.2015.06.057

Jakhar, S., Misra, R., Soni, M.S., Gakkhar, N. (2016). Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct. Engineering Science and Technology, an International Journal. 19(2), 1059–1066

http://dx.doi.org/10.1016/j.jestch.2016.01.009

Danilevskiy, L. N. (2014). [Systems of artificial ventilation with recuperation of heat energy of outflowing air for residential premises]. Minsk, Byelorussia (in Russian).

Balashev, A. A., Polunina, N. Yu. (2011). [Systems engineering for heating and ventilation of civil buildings]. Tambov, Russia. (in Russian).

Fu, H., Liu, X., Xie, Y., Jiang, Y. (2019). Experimental and numerical analysis on total heat recovery performance of an enthalpy wheel under high temperature high humidity working conditions. Applied Thermal Engineering. 146, 482–494.

https://doi.org/10.1016/j.applthermaleng.2018.10.026

Tu, R. Liu, X.H., Jiang, Y. (2013). Performance comparison between enthalpy recovery wheels and dehumidification wheels, Int. J. Refrig., 36, 2308–2322. https://doi.org/10.1016/j.ijrefrig.2013.07.014

Corsini, A., Delibra, G., Di Meo, G., Martinia M., Rispolia, F., Santoriello, A. (2015). A CFD-based virtual test-rig for rotating heat exchangers. Energy Procedia. 82, 245–251. https://doi.org/10.1016/j.egypro.2015.12.029

Tyfour, W. R., Tashtoush, G., Al-Khayyat, A. (2015). Design and testing of a ready-to-use standalone hot air space heating system. Energy Procedia. 74, 1228 – 1238 https://doi.org/10.1016/j.egypro.2015.07.767

Manyumbua, E., Martin, V., Fransson, T. (2014). Simple mathematical modeling and simulation to estimate solar-regeneration of a silica gel bed in a naturally ventilated vertical channel for Harare, Zimbabwe. Energy Procedia. 57, 1733–1742. https://doi.org/10.1016/j.egypro.2014.10.162

Aristov, Y.I. (2017). VENTIREG—A New Approach to Regenerating Heat and Moisture in Dwellings in Cold Countries. In: Desiccant Heating, Ventilating, and Air-Conditioning Systems (pp. 87–107). Springer, Singapore.

http://dx.doi.org/10.1007/978-981-10-3047-5_4.

Aristov, Yu.I., Mezentsev, I.S., Mukhin, V.A. (2006): New approach to regenerating heat and moisture in ventilation systems. 1. Laboratory prototype. Eng. Thermophys. 79, 143–50. http://dx.doi.org/ 10.1007/s10891-006-0137-7

Aristov, Yu.I., Mezentsev, I.S., Mukhin, V.A. (2006): New approach to regenerating heat and moisture in ventilation systems. 2. Prototype of real unit. J. Eng. Thermophys. 79. 151–157.

Belyanovskaya, E.A., Lytovchenko, R.D., Sukhyy, K.M., Sukhyy, M.P., Gubinskyi, M.V. (2018). Performance characteristics of adsorptive regenerator of low-potential heat and moisture based on composite adsorbents ‘silica gel – sodium sulphate’ synthesized by sol – gel method. Scientific works. 82(1), 37–41. http://dx.doi.org/10.15673/swonaft.v82i1.1003

Sukhyy K., Belyanovskaya E., Kovalenko V., Kotok V., Sukhyy M., Kolomiyets E., Gubynskyi M., Yeromin O., Prokopenko O. (2018). The study of properties of composite adsorptive materials “silica gel – crystalline hydrate” for heat storage devices. Eastern-European Journal of Enterprise Technologies, 91(1). 52–58.

https://doi.org/10.15587/1729-4061.2018.123896

Sukhyy K.M., Belyanovskaya E.A., Kozlov Ya.N., Kolomiyets E.V., Sukhyy M.P. (2014) Structure and Adsorption Properties of the Composites ‘Silica Gel – Sodium Sulphate’, obtained by Sol – Gel Method. Applied Thermal Engineering, 64, 408–412.

https://doi.org/10.1016/j.applthermaleng.2013.12.013

Scapino L., Zondag H. A., Van Bael J., Diriken J., Rindt C. C. M. (2017) Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Applied Energy, 190. 920–948. http://doi: 10.1016/j.apenergy.2016.12.148

Nagel, T., Beckert, S., Böttcher, N., Gläser R., Kolditz, O. (2016). Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds – A review. Applied Energy, 178, 323–345.

https://doi.org/10.1016/j.apenergy.2016.06.051

Grekova, A. D., Gordeeva, L. G., Aristov, Y. I. (2017) Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Applied Thermal Engineering, 124, 1401–1408.

http://doi: 10.1016/j.applthermaleng.2017.06.122

Cabeza, L. F., Solé, A., Barreneche, C. (2017). Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy, 110, 3–39. http://doi: 10.1016/j.renene.2016.09.059

Sukhyy, K.M., Belyanovskaya, E.A., Kolomiyets, E.V. (2018). Design and performance of adsorptive transformers of heat energy. Riga, Latvia: LAP Lambert Academic Publishing.

Downloads

Published

2019-10-22