OPERATING REGIME OF ADSORPTIVE HEAT-MOISTURE REGENERATORS BASED ON COMPOSITES ‘SILICA GEL - SODIUM SULPHATE’ AND ‘SILICA GEL – SODIUM ACETATE’
DOI:
https://doi.org/10.15421/081917Keywords:
adsorptive heat-moisture regenerator, temperature efficiency factor, maximal adsorption, composite adsorbent.Abstract
Operational parameters of adsorptive regenerator of low-potential heat and moisture based on composite adsorbents «silica gel - sodium sulphate» and «silica gel – sodium acetate» synthesized by sol – gel method were studied. Correlation of the parameters such as airflow rate, switching period, and temperatures of internal and external air, temperature efficiency factor was stated. Purposeful changing the temperature efficiency factor in rather wide ranges is shown when the switching period and airflow rate variated. Maximal values of temperature efficiency factors are stated at the airflow rates and switching over time of at most 0.22 – 0.32 m/s and 5 – 10 min., when composite «silica gel – sodium sulphate» used. Regenerators based on composites «silica gel – sodium sulphate» are stated to surpass devices based on «silica gel – sodium acetate» by at least 9 – 10 % of temperature efficiency factors. Efficiency of adsorptive regenerators is revealed to be affected by the meteorological conditions. Maximal values of temperature efficiency factor of regenerators based on composites «silica gel – sodium sulphate» are corresponded with the external air temperature of –5 – 0 °C and internal air temperature of 15 – 16 °C.
References
2012 ASHRAE HANDBOOK Heating, Ventilating, And Air-Conditioning SYSTEMS AND EQUIPMENT (2012) Athlanta, USA: ASHRAE
Ananyev, V.А., Baluyeva, L.N., Galperin, А.D., Gorodov A.K., Yereomin M.Y., Zvyagintseva S.M., Murashko V.P., Sedykh I.V. (2001). [Ventilation and conditioning systems: theory and practice]. Мoskow, Russia: Yevroklimat, (in Russian)
Kolomiyets O.V. (2015) Pidvyshchennya efektyvnosti adsorbtsiynykh peretvoryuvachiv teplovoyi enerhiyi za rakhunok vykorystannya novykh kompozytnykh sorbentiv (Cand. thech. sciences). Retrieved from Dissertations and Theses database. (UMI No. РА430247)
Elhelw, M. (2016) Analysis of energy management for heating, ventilating and air-conditioning systems. Alexandria Engineering Journal. 55(2), 22–30 http://dx.doi.org/10.1016/j.aej.2016.02.021
Mehta, J., Badrakia, H.S. (2014). Fresh air dehumidification in a novel liquid desiccant-air contacting device. IOSR Journal of Mechanical and Civil Engineering. 11, 79–82.
https://doi.org/10.9790/1684-11447982.
Aman, J., Ting, D.S.-K, Henshaw, P. (2014): Residential solar air conditioning: Energy and exergy analyses of an ammonia – water absorption cooling system. Appl. Thermal Eng. 62, 424–432. https://doi.org/10.1016/j.applthermaleng.2013.10.006
Kim, M., Park, J., Sung, M., Choi, A., Jeong, J. (2014): Annual operating energy savings of liquid desiccant and evaporative-cooling assisted 100% outdoor air system, Energy Build. 76, 538–550.
https://doi.org/10.1016/j.enbuild.2014.03.006
Buker, M., Riffat, S. (2015): Recent developments in solar assisted liquid desiccant evaporative cooling technology—a review, Energy Build. 96, 95–108. https://doi.org/10.1016/j.enbuild.2015.03.020
Kim, M., Park, J., Jeong, J. (2015): Simplified model for packed-bed tower regenerator in a liquid desiccant system. Appl. Therm. Eng. 89(5), 717–726. https://doi.org/10.1016/j.applthermaleng.2015.06.057
Jakhar, S., Misra, R., Soni, M.S., Gakkhar, N. (2016). Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct. Engineering Science and Technology, an International Journal. 19(2), 1059–1066
http://dx.doi.org/10.1016/j.jestch.2016.01.009
Danilevskiy, L. N. (2014). [Systems of artificial ventilation with recuperation of heat energy of outflowing air for residential premises]. Minsk, Byelorussia (in Russian).
Balashev, A. A., Polunina, N. Yu. (2011). [Systems engineering for heating and ventilation of civil buildings]. Tambov, Russia. (in Russian).
Fu, H., Liu, X., Xie, Y., Jiang, Y. (2019). Experimental and numerical analysis on total heat recovery performance of an enthalpy wheel under high temperature high humidity working conditions. Applied Thermal Engineering. 146, 482–494.
https://doi.org/10.1016/j.applthermaleng.2018.10.026
Tu, R. Liu, X.H., Jiang, Y. (2013). Performance comparison between enthalpy recovery wheels and dehumidification wheels, Int. J. Refrig., 36, 2308–2322. https://doi.org/10.1016/j.ijrefrig.2013.07.014
Corsini, A., Delibra, G., Di Meo, G., Martinia M., Rispolia, F., Santoriello, A. (2015). A CFD-based virtual test-rig for rotating heat exchangers. Energy Procedia. 82, 245–251. https://doi.org/10.1016/j.egypro.2015.12.029
Tyfour, W. R., Tashtoush, G., Al-Khayyat, A. (2015). Design and testing of a ready-to-use standalone hot air space heating system. Energy Procedia. 74, 1228 – 1238 https://doi.org/10.1016/j.egypro.2015.07.767
Manyumbua, E., Martin, V., Fransson, T. (2014). Simple mathematical modeling and simulation to estimate solar-regeneration of a silica gel bed in a naturally ventilated vertical channel for Harare, Zimbabwe. Energy Procedia. 57, 1733–1742. https://doi.org/10.1016/j.egypro.2014.10.162
Aristov, Y.I. (2017). VENTIREG—A New Approach to Regenerating Heat and Moisture in Dwellings in Cold Countries. In: Desiccant Heating, Ventilating, and Air-Conditioning Systems (pp. 87–107). Springer, Singapore.
http://dx.doi.org/10.1007/978-981-10-3047-5_4.
Aristov, Yu.I., Mezentsev, I.S., Mukhin, V.A. (2006): New approach to regenerating heat and moisture in ventilation systems. 1. Laboratory prototype. Eng. Thermophys. 79, 143–50. http://dx.doi.org/ 10.1007/s10891-006-0137-7
Aristov, Yu.I., Mezentsev, I.S., Mukhin, V.A. (2006): New approach to regenerating heat and moisture in ventilation systems. 2. Prototype of real unit. J. Eng. Thermophys. 79. 151–157.
Belyanovskaya, E.A., Lytovchenko, R.D., Sukhyy, K.M., Sukhyy, M.P., Gubinskyi, M.V. (2018). Performance characteristics of adsorptive regenerator of low-potential heat and moisture based on composite adsorbents ‘silica gel – sodium sulphate’ synthesized by sol – gel method. Scientific works. 82(1), 37–41. http://dx.doi.org/10.15673/swonaft.v82i1.1003
Sukhyy K., Belyanovskaya E., Kovalenko V., Kotok V., Sukhyy M., Kolomiyets E., Gubynskyi M., Yeromin O., Prokopenko O. (2018). The study of properties of composite adsorptive materials “silica gel – crystalline hydrate” for heat storage devices. Eastern-European Journal of Enterprise Technologies, 91(1). 52–58.
https://doi.org/10.15587/1729-4061.2018.123896
Sukhyy K.M., Belyanovskaya E.A., Kozlov Ya.N., Kolomiyets E.V., Sukhyy M.P. (2014) Structure and Adsorption Properties of the Composites ‘Silica Gel – Sodium Sulphate’, obtained by Sol – Gel Method. Applied Thermal Engineering, 64, 408–412.
https://doi.org/10.1016/j.applthermaleng.2013.12.013
Scapino L., Zondag H. A., Van Bael J., Diriken J., Rindt C. C. M. (2017) Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Applied Energy, 190. 920–948. http://doi: 10.1016/j.apenergy.2016.12.148
Nagel, T., Beckert, S., Böttcher, N., Gläser R., Kolditz, O. (2016). Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds – A review. Applied Energy, 178, 323–345.
https://doi.org/10.1016/j.apenergy.2016.06.051
Grekova, A. D., Gordeeva, L. G., Aristov, Y. I. (2017) Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Applied Thermal Engineering, 124, 1401–1408.
http://doi: 10.1016/j.applthermaleng.2017.06.122
Cabeza, L. F., Solé, A., Barreneche, C. (2017). Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy, 110, 3–39. http://doi: 10.1016/j.renene.2016.09.059
Sukhyy, K.M., Belyanovskaya, E.A., Kolomiyets, E.V. (2018). Design and performance of adsorptive transformers of heat energy. Riga, Latvia: LAP Lambert Academic Publishing.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).