MODERN DIRECTIONS OF SCIENTIFIC ENGINEERING OF THE BURNING RATE MODIFIERS FOR COMPOSITE SOLID PROPELLANTS

Authors

DOI:

https://doi.org/10.15421/081919

Keywords:

the composite solid propellants, burning rate modifier, ferrocene derivatives, transition metal oxides, high energy materials, high energy coordination compounds, high nitrogen content energetic materials.

Abstract

Energetic materials are used in many applications, from rocket propellants, high explosives, gun propellants to various pyrotechnic devices, military or commercial. The composite solid propellants are the main chemical propulsive force behind missiles and rockets. An excellent solid propellant should have an extremely stable burning rate and a low pressure exponent. To achieve this aim one of the best ways is to add a burning rate modifier into the propellant. Nowadays, burning rate catalysts mainly include transition metal oxides, nano-metal particles, metal chelates, ferrocene-based polymers and derivatives. There are ongoing research programs worldwide to develop propellants with higher performance. The use of energetic additives is considered to be one of the practical ways to improve the energy level and other technical performances of solid propellants.

In this paper, recent developments of high energy materials are reviewed. Attention is directed to the synthesis aspects and some of the physico-chemical properties and structure of such ballistic modifiers as energetic coordination compounds, high nitrogen content materials, ferrocene-based polymers.

Author Biographies

Olena S. Kositsyna, Oles Honchar Dnipro National University

Chemistry and Chemical Technology of of Highmolecular compounds Department, Associate Professor

Olena Yu. Nesterova, Oles Honchar Dnipro National University, Gagarin Ave., 72, Dnipro, 49010

Chemistry and Chemical Technology of of Highmolecular compounds Department, Associate Professor, Ph.D. 


References

Heijden, van der A. E. D. M. (2018). Developments and challenges in the manufacturing, characterization and scale-up of energetic nanomaterials – A review. Chem. Eng. J., 350, 939–948.

https://doi.org/10.1016/j.cej.2018.06.051

Badgujar, D. M., Talawar, M. B., Asthana, S. N., Mahulikar, P. P. (2008). Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater., 151(2-3), 289–305.

https://doi.org/10.1016/j.jhazmat.2007.10.039

Chang, S., Wei, S., Zhao, J., Zhai, L., Xia, Z., Wang, B., Yang, Q., Chen, S., Gao, S. (2019). Thermostable and insensitivity furazan energetic complexes: Syntheses, structures and modified combustion performance for ammonium perchlorate. Polyhedron, 164, 169–175. https://doi.org/10.1016/j.poly.2019.02.051

Singh, R. P., Verma, R. D., Meshri, D. T., Shreeve, J. M. (2006). Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem., Int. Ed., 45(22), 3584–3601. https://doi.org/10.1002/anie.200504236

Studilin, A. I., Filatov, S. A., Serushkin, V. V., Sinditskii, V. P. (2008). [The study of the temperature sensitivity of the burning rate of composite solid propellant on an active binder]. Uspekhi v khimii i khimicheskoy tekhnologii, 22(84), 64-69 (in Russian). http://acct.muctr.ru/article/issue/84/64/

Chernyi, A. N., Levshenkov, A. I., Sinditskii, V. P. (2010). [Combustion behavior of energetic compositions on the basis of nitroester binders, ammonium perchlorate and octogen]. Uspekhi v khimii i khimicheskoy tekhnologii, 24(108), 105–114 (in Russian). http://acct.muctr.ru/article/issue/108/105/

Suresh Babu, K.V., Kanaka Raju, P., Thomas, C.R., Syed Hamed, A., Ninan, K.N. (2017). Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction. Def. Technol., 13(4), 239–245. https://doi.org/10.1016/j.dt.2017.06.001

Maggi, F., Dossi, S., Paravan, C., Galfetti, L., Rota, R., Cianfanelli, S., Marra, G. (2019). Iron oxide as solid propellant catalyst: A detailed characterization. Acta Astronaut., 158, 416–424.

https://doi.org/10.1016/j.actaastro.2018.07.037

Chen, Y., Ma, K., Wang, J., Gao, Y., Zhu, X., Zhang, W. (2018). Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate. Mater. Res. Bull., 101, 56–60.

https://doi.org/10.1016/j.materresbull.2018.01.013

Hu, Y., Yang, S., Tao, B., Liu, X., Lin, K., Yang, Y., Fan, R., Xia, D., Hao, D. (2019). Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum, 159, 105-111. https://doi.org/10.1016/j.vacuum.2018.10.020

Sanoop, A. P., Rajeev, R., George, B. K. (2015). Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim. Acta, 606, 34–40. https://doi.org/10.1016/j.tca.2015.03.006

Mahdavi, M., Farrokhpour, H., Tahriri, M. (2017). In situ formation of MxOy nano-catalysts (M = Mn, Fe) to diminish decomposition temperature and enhance heat liberation of ammonium perchlorate. Mater. Chem. Phys., 196(1), 9–20.

https://doi.org/10.1016/j.matchemphys.2017.04.038

Chatragadda, K., Vargeese, A. A. (2017). Synergistically catalyzed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles. Combust. Flame, 182, 28–35. https://doi.org/10.1016/j.combustflame.2017.04.007

Vargeese, A. A. (2016). A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust. Flame, 165, 354-360. https://doi.org/10.1016/j.combustflame.2015.12.018

Kohga, M., Togo, S. (2018). Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust. Flame, 192, 10–24.

https://doi.org/10.1016/j.combustflame.2018.01.040

Sharma, J. K., Srivastava, P., Singh, G., Akhtar, M. S., Ameen, S. (2015). Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles. Thermochim. Acta, 614, 110–115. https://doi.org/10.1016/j.tca.2015.06.023

McDonald, B. A., Rice, J. R., Kirkham, M. W. (2014). Humidity induced burning rate degradation of an iron oxide catalyzed ammonium perchlorate/HTPB composite propellant. Combust. Flame, 161(1), 363–369. https://doi.org/10.1016/j.combustflame.2013.08.014

Ishitha, K., Ramakrishna, P. A. (2014). Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust. Flame, 161(10), 2717–2728. https://doi.org/10.1016/j.combustflame.2014.03.015

Krishnan, S., Jeenu, R. (1990). Subatmospheric burning characteristics of AP/CTBP composite propellants with burning rate modifiers. Combust. Flame, 80(1), 1-6. https://doi.org/10.1016/0010-2180(90)90048-V

Rao, D. C. K., Yadav, N., Joshi, P. C. (2016). Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants. Def. Technol., 12(4), 297-304. https://doi.org/10.1016/j.dt.2016.01.001

Li, W., Cheng, H. (2007). Cu–Cr–O nanocomposites: Synthesis and characterization as catalysts for solid state propellants. Solid State Sci., 9(8), 750–755. https://doi.org/10.1016/j.solidstatesciences.2007.05.011

Hosseini, S. G., Abazari, R., Gavi, A. (2014). Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effect on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci., 37, 72–79.

https://doi.org/10.1016/j.solidstatesciences.2014.08.014

Dave, P. N., Ram, P. N., Chaturvedi. S. (2016). Ti-alloys: Potential nano-modifier for Rocket Propellants. Int. J. Nano Dimens., 7(2), 168–173. http://www.ijnd.ir/article_648088.html

Chaturvedi, S., Dave, P. D., Patel, N. N. (2015). Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl. Nanosci., 5(1), 93–98. https://doi.org/10.1007/s13204-014-0296-3

Chaturvedi, S., Dave, P. N. (2013). A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc., 17(2), 135–149. https://doi.org/10.1016/j.jscs.2011.05.009

Yan, Q.-L., Zhao, F.-Q., Kuo, K. K., Zhang, X.-H., Zeman, S., DeLuca, L. T. (2016). Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci., 57, 75-136. https://doi.org/10.1016/j.pecs.2016.08.002

Singh, G., Kapoor, I. P. S., Dubey, S., Prem Felix, S. (2009). Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites. Propellants, Explos., Pyrotech., 34(1), 72-77 https://doi.org/10.1002/prep.200800017

Shim, H.-M., Lim, G.-E., Kim, J.-K., Kim, H.-S., Koo, K.-K. (2017). Preparation of the spherical nano-Fe2O3/NH4ClO4 composites by reactive crystallization and their characterization. J. Ind. Eng. Chem., 54, 434-439. https://doi.org/10.1016/j.jiec.2017.06.024

Gao, J., Wang, L., Yu, H., Xiao, A., Ding, W. (2011). Recent Research Progress in Burning Rate Catalyst. Propellants, Explos., Pyrotech., 36(5), 404-409. https://doi.org/10.1002/prep.200900093

Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang, W., Gao, Z. (2014). Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorg. Chim. Acta, 421, 191-199. http://dx.doi.org/10.1016/j.ica.2014.05.043

Alikin, V. N., Vakhrushev, A. V., Golubchikov, V. B., Yermilov, A. S., Lipanov, A. M., Serebrennikov, S. Yu. (2011). [Solid-propellant rockets (Vol. 4)]. In A. M. Lipanov (Ed.). Moscow, Russian Federation: Mashinostroenie (in Russian). http://elib.pstu.ru/vufind/Record/RUPSTUbooks159095

Kudryavtsev, P. (2014). Production technology development and creation of production of additives used in solid rocket propellants. Sci. Isr. - Technol. Advantages, 16(3), 25–37.

https://www.researchgate.net/publication/312371240

Sinditskii, V.P., Chernyi, A.N., Marchenkov, D.A. (2014). Mechanisms of combustion catalysis by ferrocene derivatives. 1. Combustion of ammonium perchlorate and ferrocene. Fizika Goreniya i Vzryva – Combustion, Explosion, and Shock Waves, 50(1), 51–59. https://doi.org/10.1134/S0010508214010067

Sinditskii, V.P., Chernyi, A.N., Marchenkov, D.A. (2014). Mechanism of combustion catalysis by ferrocene derivatives. 2. Combustion of ammonium perchlorate-based propellants with ferrocene derivatives. Fizika Goreniya i Vzryva – Combustion, Explosion, and Shock Waves, 50(2), 158–167.

https://doi.org/10.1134/S0010508214020063

Liu, X., Zhao, D., Bi, F., Fan, X., Zhao, F., Zhang, G., Zhang, W., Gao, Z. (2014). Synthesis, characterization, migration studies and combustion catalytic performances of energetic ionic binuclear ferrocene compounds. J. Organomet. Chem., 762, 1–8. https://doi.org/10.1016/j.jorganchem.2014.03.011

Usman, M., Wang, L., Yu, H., Haq, F., Haroon, M., Summe Ullah, R., Khan, A., Fahad, S., Nazir, A., Elshaarani, T. (2018). Recent progress on ferrocene-based burning rate catalysts for propellant applications. J. Organomet. Chem., 872, 40-53. https://doi.org/10.1016/j.jorganchem.2018.07.015

Tong, R., Zhao, Y., Wang, L., Yu, H., Ren, F., Saleem, M., Amer, W. A. (2014). Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives. J. Organomet. Chem., 755, 16-32. https://doi.org/10.1016/j.jorganchem.2013.12.052

Zain-ul-Abdin, Yu, H., Wang, L., Saleem, M., Khalid, H., Abbasi, N. M., Akram, M. (2014). Synthesis, anti-migration and burning rate catalytic mechanism of ferrocene-based compounds. Appl. Organomet. Chem., 28(8), 567–575. https://doi.org/10.1002/aoc.3166

Xia, X., Yu, H., Wang, L., Deng, Z., Shea, K. J., Zain-ul-Abdin. (2018). Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties. Eur. Polym. J., 100, 103–110. https://doi.org/10.1016/j.eurpolymj.2018.01.023

Wu, J., Wang, L., Yu, H., Zain-ul-Abdin, Khan, R. U. (2017). Ferrocene-based redox-responsive polymer gels: Synthesis, structure and applications. J. Organomet. Chem., 828, 38–51.

https://doi.org/10.1016/j.jorganchem.2016.10.041

Pittman, C. U. Jr., Lin, С.-C., Rounsefell, T. D. (1978). Kinetics of Radical-Initiated Addition Homopolymerization of n5-(Vinilcyclopentadienyl) tricarbonylmanganese. Macromolecules, 11(5), 1022–1027. https://doi.org/10.1021/ma60065a033

Korshak, V. V., Sosin, S. L., Chistyakova, M.V. (1958). [Application of polyrecombination reaction for polymers synthesis]. Doklady AN SSSR, 121(2), 299–302 (in Russian).

http://mi.mathnet.ru/rus/dan/v121/i2/p299

Pittman, C. U. Jr., Lai, J. C., Venderpool, D. P. (1970). Kinetics of ferrocenylmethyl acrylate and ferrocenylmethyl methacrylate polymerization. Preparation of polymeric ferricinium salts. Macromolecules, 3(1), 105–107. https://doi.org/10.1021/ma60013a024

Lai, J. C., Rounsefell, T. D., Pittman, C. U. Jr. (1971). Copolymerization of Ferrocenylmethyl Acrylate and Ferrocenylmethyl Methacrylate with Organic Monomers. Macromolecules, 4(2), 155–161. https://doi.org/10.1021/ma60020a005

Schlögl, К., Steyrer, W. (1965). Ferrocene-Acetylene, 5. Mitt.: Eine allgemeine Methode zur Darstellung von Ferrocenylacetylenen und–allenen aus Acylferrocenen (27. Mitt. über Ferrocenderivative). Monatshefte für Chemie, 96(5), 1520–1535.

https://doi.org/10.1007/BF00902085

Osgerby, J. M., Pauson, P. L. (1961). Ferrocene derivatives. Part IX. Some disubstituted derivatives. J. Chem. Soc., 0, 4604–4609.

https://doi.org/10.1039/JR9610004604

Tsubakiyama, K., Matsuo, T., Sasaki, T., Yoshida, K., Fujimura, T., Araki, K. (1979). Ferrocene-containing polymers. I. Radiation-induced polymerization of ferrocenylmethyl methacrylate. J. Polym. Sci., Part A: Polym. Chem., 17(1), 173-184. https://doi.org/10.1002/pol.1979.170170117

Rosenblum, M. Brawn, N., Papenmeier, J., Applebaum, M. (1966). Synthesis of ferrocenylacetylenes. J. Organomet. Chem., 6(2), 173–180. https://doi.org/10.1016/S0022-328X(00)93653-2

Pomogaylo, A. D., Savostyanov, V. S. (1988). [Metal-containing monomers and polymers on their basis]. Moscow, USSR: Khimiya (in Russian).

http://elib.pstu.ru/vufind/Record/RUPSTUbooks141651

Ünver, A., Dilsiz, N., Volkan, M., Akovali, G. (2005). Investigation of acetyl ferrocene migration from hydroxyl-terminated polybutadiene based elastomers by means of ultraviolet-visible and atomic absorption spectroscopic techniques. J. Appl. Polym. Sci., 96(5), 1654–1661. https://doi.org/10.1002/app.21624

Zain-ul-Abdin, Wang, L., Yu, H., Saleem, M., Akram, M., Khalid, H., Abbasi, N. M., Yang, X. (2017). Synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts. J. Colloid and Interface Sci., 487, 38–51. https://doi.org/10.1016/j.jcis.2016.10.001

Palaiah, R. S., Bulakh, N. R., Talawar, M. B., Mukundan, T. (2000). Studies on metal salts of 4-(2,4,6-trinitroanilino) benzoic acid. J. Energ. Mater., 18(2-3), 207–217. https://doi.org/10.1080/07370650008216120

Nair, J. K., Talawar, M. B., Mukundan, T. (2001). Transition metal salts of 2,4,6-trinitroanilinobenzoic acid – potential energetic ballistic modifiers for propellant. J. Energ. Mater., 19(2-3), 155-162. https://doi.org/10.1080/07370650108216124

Soman, R. R., Mukundan, T., Bhat, V. K., Singh, H. (2000). Lead salt of 2,4,n-trinitroanilinoacetic acid – an energetic ballistic modifier for double base propellants. J. Energ. Mater., 18(2-3), 163–175. https://doi.org/10.1080/07370650008216118

Fong, C. W., Hamshere, B. L. (1986). The mechanism of burning rate catalysis in composite propellants by transition metal complexes. Combust. Flame, 65(1), 71-78. https://doi.org/10.1016/0010-2180(86)90074-X

Kulkarni, P. B., Reddy, T. S., Nair, J. K., Nazare, A. N., Talawar, M. B., Mukundan, T., Asthana, S. N. (2005). Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-trinitroanilino benzoic acid (TABA): Potential energetic ballistic modifiers. J. Hazard. Mater., 123(1-3), 54–60. https://doi.org/10.1016/j.jhazmat.2005.04.010

Rao, K. U. B., Soman, R. R., Singh, H. (1990). Explosive properties of metal salts of nitroanilinoacetic acids. J. Energ. Mater., 8(1-2), 99–109. https://doi.org/10.1080/07370659008017248

Singh, S., Srivastava, P., Singh, G. (2015). Nano oxalates of Fe, Co, Ni: Burning rate modifiers for composite solid propellants. J. Ind. Eng, Chem., 27, 88-95. https://doi.org/10.1016/j.jiec.2014.11.047

Joshi, A. D., Singh, H. (1992). Effect of certain lead and copper compounds as ballistic modifier for double base rocket propellants. J. Energ. Mater., 10(4-5), 299–309. https://doi.org/10.1080/07370659208018928

Sinditskii, V. P., Serushkin, V. V. (1996). Design and combustion behavior of explosive coordination compounds. Def. Sci. J., 46(5), 371–383. https://doi.org/10.14429/dsj.46.4305

Singh, G., Prem Felix, S., Pandey, D. K. (2004). Studies on energetic compounds part 37: Kinetics of thermal decomposition of perchlorate complexes of some transition metals with ethylenediamine. Thermochim. Acta, 411(1), 61–71.

https://doi.org/10.1016/j.tca.2003.07.011

Singh, G., Pandey, D. K. (2003). Studies on Energetic Compounds Part 27: Kinetics and Mechanism of Thermolysis of Bis(Ethylenediamine)Metal Nitrates and Their Role in the Burning Rate of Solid Propellants. Propellants, Explos., Pyrotech., 28(5), 231-239. https://doi.org/10.1002/prep.200300010

Kumar, D., Kapoor, I. P. S., Singh, G., Fröhlich, R. (2012). Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2'-bipyridine ligand. Thermochim. Acta, 545, 67–74. https://doi.org/10.1016/j.tca.2012.06.032

Singh, C. P., Singh, A., Nibha, Daniliuc, C. G., Kumar, B., Singh, G. (2015). Preparation, crystal structure and thermal studies of cadmium perchlorate complex with 2,2’-bipyridine // J. Therm. Anal. Calorim., 121(2), 633–640. https://doi.org/10.1007/s10973-015-4613-1

Singh, G., Pandey, D. K. (2003). Studies on energetic compounds. Part 35: Kinetics of thermal decomposition of nitrate complexes of some transition metals with propylenediamine. Combust. Flame, 135(1-2), 135–143. https://doi.org/10.1016/S0010-2180(03)00155-X

Lian, P., Li, Y., Li, H., Huo, H., Wang, B., Lai, W. (2017). A DFT study on the structure and property of novel nitroimidazole derivatives as high energy density materials. Comput. Theor. Chem., 1118, 39–44. https://doi.org/10.1016/j.comptc.2017.08.031

Yin, P., Shreeve, J. M. (2017). Chapter four – Nitrogen-rich azoles as high density energy materials: Reviewing the energetic footprints of heterocycles. Adv. Heterocycl. Chem., 121, 89–131.

https://doi.org/10.1016/bs.aihch.2016.04.004

Türker, L. (2016). Azo-bridged triazoles: Green energetic materials. Def. Technol., 12(1), 1–15. https://doi.org/10.1016/j.dt.2015.11.002

Talawar, M. B., Divekar, C.N., Makashir, P. S., Asthana, S. N. (2005). Tetrakis-(4-Amino-1,2,4-Triazole)Copper Perchlorate: A Novel Ballistic Modifier for Composite Propellants. J. Propul. Power, 21(1), 186–189. https://doi.org/10.2514/1.7931

Hou, X., Guo, Z., Yang, L., Ma, H. (2019). Four three-dimensional metal-organic frameworks assembled from 1H-tetrazole: Synthesis, crystal structures and thermal properties. Polyhedron, 160, 198-206. https://doi.org/10.1016/j.poly.2018.12.035

Jurowska, A., Olszewska, A., Hodorowicz, M., Szklarzewicz, J. (2019). Tetrazole potentially high energy materials based on Mo(IV) and W(IV) complexes. Polyhedron, 160, 189-197. https://doi.org/10.1016/j.poly.2018.12.042

Huang, D., Zhao, P., Astruc, D. (2014). Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coord. Chem. Rev., 272, 145-165. https://doi.org/10.1016/j.ccr.2014.04.006

Li, F., Bi, Y., Zhao, W., Zhang, T., Zhou, Z., Yang, L. (2015). Nitrogen-Rich Salts Based on the Energetic [Monoaquabis(N,N-bis(1H-tetrazol-5-ylamine)-zinc(II)] Anion: A Promising Design in the Development of New Energetic Materials. Inorganic Chemistry, 54(4), 2050-2057. https://doi.org/10.1021/ic503021c

Singh, G., Prem Felix, S. (2002). Studies on energetic compounds 25. An overview of preparation, thermolysis and applications of the salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J. Hazard. Mater., 90(1), 1–17. https://doi.org/10.1016/S0304-3894(01)00349-1

Yi, J.-H., Zhao, F.-Q., Hong, W.-L., Xu, S.-Y., Hu, R.-Z., Chen, Z.-Q., Zhang, L.-Y. (2010). Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant. J. Hazard. Mater., 176(1-3), 257–261. https://doi.org/10.1016/j.jhazmat.2009.11.021

Kulkarni, P. B., Purandare, G. N., Nair, J. K., Talawar, M. B., Mukundan, T., Asthana, S. N. (2005). Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J. Hazard. Mater., 119(1-3), 53–61. https://doi.org/10.1016/j.jhazmat.2004.12.014

Singh, G., Prem Felix, S. (2003). Studies on energetic compounds: Part 36: Evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants. Combust. Flame, 135(1-2), 145–150. https://doi.org/10.1016/S0010-2180(03)00156-1

Milyushkin, A. L., Birin, K. P., Matyushin, D. D., Semeikin, A. V., Iartsev, S. D., Karnaeva, A. E., Uleanov, A. V., Buryak, A. K. (2019). Isomeric derivatives of triazoles as new toxic decomposition products of 1,1-dimethylhydrazine. Chemosphere, 217, 95–99. https://doi.org/10.1016/j.chemosphere.2018.10.155

Synthesis and Characterization of Some Cobalt (II), Nickel (II), Zinc (II) and Cadmium (II) Hydrazine Azides / K. K. Narang, M. K. Singh (Mrs), K. B. Singh, R. A. Lal. // Synth. React. Inorg. Met.-Org. Chem. – 1996. – Vol. 26, N 4. – P. 573 Narang, K. K., Singh (Mrs), M. K., Singh, K. B., Lal, R. A. (1996). Synthesis and Characterization of Some Cobalt (II), Nickel (II), Zinc (II) and Cadmium (II) Hydrazine Azides. Synth. React. Inorg. Met.–Org. Chem., 26(4), 573–589.

https://doi.org/10.1080/00945719608004763

Tani, H., Diamon, Y., Sasaki, M., Matsuura, Y. (2017). Atomization and hypergolic reactions of impinging streams of monomethylhydrazine and dinitrogen tetroxide. Combust. Flame, 185, 142–151. https://doi.org/10.1016/j.combustflame.2017.07.005

Amrousse, R., Katsumi, T., Azuma, N., Hori, K. (2017). Hydroxylammonium nitrate (HAN) – based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up. Combust. Flame, 176, 334–348. https://doi.org/10.1016/j.combustflame.2016.11.011

Chhabra, J. S., Talawar, M. B., Makashir, P. S., Asthana, S. N., Singh, H. (2003). Synthesis, characterization and thermal studies of (Ni/Co) metal salts of hydrazine: potential initiatory compounds. J. Hazard. Mater., 99(3), 225–239. https://doi.org/10.1016/S0304-3894(02)00247-9

Patil, K. C., Nesamani, C., Pai Verneker, V. R. (1982). Synthesis and Characterisation of Metal Hydrazine Nitrate, Azide and Perchlorate Complexes. Synth. React. Inorg. Met. – Org. Chem., 12(4), 383-395. https://doi.org/10.1080/00945718208063122

Shunguan, Z., Youchen, W., Wenyi, Z., Jingyan, M. (1997). Evaluation of a New Primary Explosive: Nickel Hydrazine Nitrate (NHN) Complex. Propellants, Explos., Pyrotech., 22(6), 317–320.

https://doi.org/10.1002/prep.19970220604

Chen, H.-Y., Zhang, T.-L., Zhang, J.-G., Yu, K.-B. (2005). Crystal Structure and Thermal Property of a Binuclear Manganese(II) Sulfate Complex with Carbohydrazide. Struct. Chem., 16(6), 657–663. https://doi.org/10.1007/s11224-005-8257-9

Li, Z.-M., Zhang, T.-L., Yang, L., Zhou, Z.-N., Zhang, J.-G. (2012). Synthesis, crystal structure, thermal decomposition, and non-isothermal reaction kinetic analysis of an energetic complex: [Mg(CHZ)3](ClO4)2 (CHZ = carbohydrazide). J. Coord. Chem., 65(1), 143–155. https://doi.org/10.1080/00958972.2011.643790

Huang, H., Zhang, T., Zhang, J., Wang, L. (2010). A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates. J. Hazard. Mater., 179(1-3), 21–27. https://doi.org/10.1016/j.jhazmat.2010.02.036

Talawar, M. B., Agrawal, A. P., Chhabra, J. S., Asthana, S. N. (2004). Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide. J. Hazard. Mater., 113(1-3), 57–65. https://doi.org/10.1016/j.jhazmat.2004.07.001

Huang, H., Zhang, T., Zhang, J., Wang, L. (2009). A screened hybrid density functional study on energetic complexes: Alkaline-earth metal carbohydrazide perchlorates. J. Mol. Struct.: THEOCHEM, 915(1-3), 43–46. https://doi.org/10.1016/j.theochem.2009.08.017

Akiyoshi, M., Nakamura, H., Hara, Y. (2000). The Strontium Complex Nitrates of Carbohydrazide as a Non-Azide Gas Generator for Safer Driving – the Thermal Behavior of the Sr Complex with Various Oxidizing Agents. Propellants, Explos., Pyrotech., 25(5), 224–229. https://doi.org/10.1002/1521-4087(200011)25:5<224::AID-PREP224>3.0.CO;2-O

Liu, Y., Zhang, R., Feng, C.-G., Yang, L., Zhang, T.-L. (2015). Predicted crystal structures, analysis, impact sensitivities and morphology of solid high-energy complexes: Alkaline-earth carbohydrazide perchlorates. Cent. Eur. J. Energ. Mater., 12(2), 229–248. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a8af53bb-9c20-4666-99f4-190b0941d7a8

Liu, R., Zhou, Z., Qi, S., Yang, L., Wu, B., Huang, H., Zhang, T. (2013). Synthesis, Crystal Structure, and Properties of a Novel, Highly Sensitive Energetic, Coordination Compound: Iron (II) Carbohydrazide Perchlorate. Cent. Eur. J. Energ. Mater., 10(1), 17–36. https://www.infona.pl/resource/bwmeta1.element.baztech-2c9d33c9-4595-4ea9-9098-f955b8783548

Sonawane, S. H., Gore, G. M., Polke, B. G., Nazare, A. N., Asthana, S. N. (2006). Transition Metal Carbohydrazide Nitrates: Burn-rate Modifiers for Propellants. Def. Sci. J., 56(3), 391-398. https://doi.org/10.14429/dsj.56.1905

Fogelzang, A. E., Sinditskii, V. P., Egorshev, V. Y., Serushkin, V. V. (1995). Effect of Structure of Energetic Materials on Burning Rate. MRS Online Proc. Libr., 418, pp. 151–161. https://doi.org/10.1557/PROC-418-151

Chen, S., He, W., Luo, C.-J., An, T., Chen, J., Yang, Y., Liu, P.-J., Yan, Q.-L. (2019). Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J. Hazard. Mater., 368, 404–411. https://doi.org/10.1016/j.jhazmat.2019.01.073

Isert, S., Xin, L., Xie, J., Son, S. F. (2017). The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants. Combust. Flame, 183, 322–329. https://doi.org/10.1016/j.combustflame.2017.05.024

Yan, Q.-L., Gozin, M., Zhao, F.-Q., Cohen, A., Pang, S.-P. (2016). Highly energetic composition based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799-4851. https://doi.org/10.1039/C5NR07855E

Li, Y., Alain-Rizzo, V., Galmiche, L., Audebert, P., Miomandre, F., Louarn, G., Bozlar, M., Pope, M. A., Dabbs, D. M., Aksay, I. A. (2015). Functionalization of graphene oxide by tetrazine derivatives: A versatile approach toward covalent bridges between graphene sheets. Chem. Mater., 27(12), 4298–4310. https://doi.org/10.1021/acs.chemmater.5b00672

Cohen, A., Yang, Y., Yan, Q.-L., Shlomovich, A., Petrutik, N., Burstein, L., Pang, S.-P., Gozin, M. (2016). Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide-Cu(II) complex. Chem. Mater., 28(17), 6118–6126. https://doi.org/10.1021/acs.chemmater.6b01822

Yan, Q.-L., Cohen, A., Chinnam, A. K., Petrutik, N., Shlomovich, A., Burstein, L., Gozin, M. (2016). A layered 2D triaminoguanidine – glyoxal polymer and its transition metal complexes as novel insensitive energetic nanomaterials. J. Mater. Chem. A, 4(47), 18401–18408. https://doi.org/10.1039/C6TA08041C

Yan, Q.-L., Liu, P.-J., He, A.-F., Zhang, J.-K., Ma, Y., Hao, H.-X., Zhao, F.-Q., Gozin, M. (2018). Photosensitive but mechanically insensitive graphene oxide-carbohydrazide-metal hybrid crystalline energetic nanomaterials. Chem. Eng. J., 338, 240–247. https://doi.org/10.1016/j.cej.2017.12.140

Published

2019-11-28