the composite solid propellants, burning rate modifier, ferrocene derivatives, transition metal oxides, high energy materials, high energy coordination compounds, high nitrogen content energetic materials.


Energetic materials are used in many applications, from rocket propellants, high explosives, gun propellants to various pyrotechnic devices, military or commercial. The composite solid propellants are the main chemical propulsive force behind missiles and rockets. An excellent solid propellant should have an extremely stable burning rate and a low pressure exponent. To achieve this aim one of the best ways is to add a burning rate modifier into the propellant. Nowadays, burning rate catalysts mainly include transition metal oxides, nano-metal particles, metal chelates, ferrocene-based polymers and derivatives. There are ongoing research programs worldwide to develop propellants with higher performance. The use of energetic additives is considered to be one of the practical ways to improve the energy level and other technical performances of solid propellants.

In this paper, recent developments of high energy materials are reviewed. Attention is directed to the synthesis aspects and some of the physico-chemical properties and structure of such ballistic modifiers as energetic coordination compounds, high nitrogen content materials, ferrocene-based polymers.

Author Biographies

Olena S. Kositsyna, Oles Honchar Dnipro National University

Chemistry and Chemical Technology of of Highmolecular compounds Department, Associate Professor

Olena Yu. Nesterova, Oles Honchar Dnipro National University, Gagarin Ave., 72, Dnipro, 49010

Chemistry and Chemical Technology of of Highmolecular compounds Department, Associate Professor, Ph.D. 


Heijden, van der A. E. D. M. (2018). Developments and challenges in the manufacturing, characterization and scale-up of energetic nanomaterials – A review. Chem. Eng. J., 350, 939–948.

Badgujar, D. M., Talawar, M. B., Asthana, S. N., Mahulikar, P. P. (2008). Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater., 151(2-3), 289–305.

Chang, S., Wei, S., Zhao, J., Zhai, L., Xia, Z., Wang, B., Yang, Q., Chen, S., Gao, S. (2019). Thermostable and insensitivity furazan energetic complexes: Syntheses, structures and modified combustion performance for ammonium perchlorate. Polyhedron, 164, 169–175.

Singh, R. P., Verma, R. D., Meshri, D. T., Shreeve, J. M. (2006). Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem., Int. Ed., 45(22), 3584–3601.

Studilin, A. I., Filatov, S. A., Serushkin, V. V., Sinditskii, V. P. (2008). [The study of the temperature sensitivity of the burning rate of composite solid propellant on an active binder]. Uspekhi v khimii i khimicheskoy tekhnologii, 22(84), 64-69 (in Russian).

Chernyi, A. N., Levshenkov, A. I., Sinditskii, V. P. (2010). [Combustion behavior of energetic compositions on the basis of nitroester binders, ammonium perchlorate and octogen]. Uspekhi v khimii i khimicheskoy tekhnologii, 24(108), 105–114 (in Russian).

Suresh Babu, K.V., Kanaka Raju, P., Thomas, C.R., Syed Hamed, A., Ninan, K.N. (2017). Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction. Def. Technol., 13(4), 239–245.

Maggi, F., Dossi, S., Paravan, C., Galfetti, L., Rota, R., Cianfanelli, S., Marra, G. (2019). Iron oxide as solid propellant catalyst: A detailed characterization. Acta Astronaut., 158, 416–424.

Chen, Y., Ma, K., Wang, J., Gao, Y., Zhu, X., Zhang, W. (2018). Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate. Mater. Res. Bull., 101, 56–60.

Hu, Y., Yang, S., Tao, B., Liu, X., Lin, K., Yang, Y., Fan, R., Xia, D., Hao, D. (2019). Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum, 159, 105-111.

Sanoop, A. P., Rajeev, R., George, B. K. (2015). Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim. Acta, 606, 34–40.

Mahdavi, M., Farrokhpour, H., Tahriri, M. (2017). In situ formation of MxOy nano-catalysts (M = Mn, Fe) to diminish decomposition temperature and enhance heat liberation of ammonium perchlorate. Mater. Chem. Phys., 196(1), 9–20.

Chatragadda, K., Vargeese, A. A. (2017). Synergistically catalyzed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles. Combust. Flame, 182, 28–35.

Vargeese, A. A. (2016). A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust. Flame, 165, 354-360.

Kohga, M., Togo, S. (2018). Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust. Flame, 192, 10–24.

Sharma, J. K., Srivastava, P., Singh, G., Akhtar, M. S., Ameen, S. (2015). Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles. Thermochim. Acta, 614, 110–115.

McDonald, B. A., Rice, J. R., Kirkham, M. W. (2014). Humidity induced burning rate degradation of an iron oxide catalyzed ammonium perchlorate/HTPB composite propellant. Combust. Flame, 161(1), 363–369.

Ishitha, K., Ramakrishna, P. A. (2014). Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust. Flame, 161(10), 2717–2728.

Krishnan, S., Jeenu, R. (1990). Subatmospheric burning characteristics of AP/CTBP composite propellants with burning rate modifiers. Combust. Flame, 80(1), 1-6.

Rao, D. C. K., Yadav, N., Joshi, P. C. (2016). Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants. Def. Technol., 12(4), 297-304.

Li, W., Cheng, H. (2007). Cu–Cr–O nanocomposites: Synthesis and characterization as catalysts for solid state propellants. Solid State Sci., 9(8), 750–755.

Hosseini, S. G., Abazari, R., Gavi, A. (2014). Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effect on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci., 37, 72–79.

Dave, P. N., Ram, P. N., Chaturvedi. S. (2016). Ti-alloys: Potential nano-modifier for Rocket Propellants. Int. J. Nano Dimens., 7(2), 168–173.

Chaturvedi, S., Dave, P. D., Patel, N. N. (2015). Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl. Nanosci., 5(1), 93–98.

Chaturvedi, S., Dave, P. N. (2013). A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc., 17(2), 135–149.

Yan, Q.-L., Zhao, F.-Q., Kuo, K. K., Zhang, X.-H., Zeman, S., DeLuca, L. T. (2016). Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci., 57, 75-136.

Singh, G., Kapoor, I. P. S., Dubey, S., Prem Felix, S. (2009). Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites. Propellants, Explos., Pyrotech., 34(1), 72-77

Shim, H.-M., Lim, G.-E., Kim, J.-K., Kim, H.-S., Koo, K.-K. (2017). Preparation of the spherical nano-Fe2O3/NH4ClO4 composites by reactive crystallization and their characterization. J. Ind. Eng. Chem., 54, 434-439.

Gao, J., Wang, L., Yu, H., Xiao, A., Ding, W. (2011). Recent Research Progress in Burning Rate Catalyst. Propellants, Explos., Pyrotech., 36(5), 404-409.

Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang, W., Gao, Z. (2014). Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorg. Chim. Acta, 421, 191-199.

Alikin, V. N., Vakhrushev, A. V., Golubchikov, V. B., Yermilov, A. S., Lipanov, A. M., Serebrennikov, S. Yu. (2011). [Solid-propellant rockets (Vol. 4)]. In A. M. Lipanov (Ed.). Moscow, Russian Federation: Mashinostroenie (in Russian).

Kudryavtsev, P. (2014). Production technology development and creation of production of additives used in solid rocket propellants. Sci. Isr. - Technol. Advantages, 16(3), 25–37.

Sinditskii, V.P., Chernyi, A.N., Marchenkov, D.A. (2014). Mechanisms of combustion catalysis by ferrocene derivatives. 1. Combustion of ammonium perchlorate and ferrocene. Fizika Goreniya i Vzryva – Combustion, Explosion, and Shock Waves, 50(1), 51–59.

Sinditskii, V.P., Chernyi, A.N., Marchenkov, D.A. (2014). Mechanism of combustion catalysis by ferrocene derivatives. 2. Combustion of ammonium perchlorate-based propellants with ferrocene derivatives. Fizika Goreniya i Vzryva – Combustion, Explosion, and Shock Waves, 50(2), 158–167.

Liu, X., Zhao, D., Bi, F., Fan, X., Zhao, F., Zhang, G., Zhang, W., Gao, Z. (2014). Synthesis, characterization, migration studies and combustion catalytic performances of energetic ionic binuclear ferrocene compounds. J. Organomet. Chem., 762, 1–8.

Usman, M., Wang, L., Yu, H., Haq, F., Haroon, M., Summe Ullah, R., Khan, A., Fahad, S., Nazir, A., Elshaarani, T. (2018). Recent progress on ferrocene-based burning rate catalysts for propellant applications. J. Organomet. Chem., 872, 40-53.

Tong, R., Zhao, Y., Wang, L., Yu, H., Ren, F., Saleem, M., Amer, W. A. (2014). Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives. J. Organomet. Chem., 755, 16-32.

Zain-ul-Abdin, Yu, H., Wang, L., Saleem, M., Khalid, H., Abbasi, N. M., Akram, M. (2014). Synthesis, anti-migration and burning rate catalytic mechanism of ferrocene-based compounds. Appl. Organomet. Chem., 28(8), 567–575.

Xia, X., Yu, H., Wang, L., Deng, Z., Shea, K. J., Zain-ul-Abdin. (2018). Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties. Eur. Polym. J., 100, 103–110.

Wu, J., Wang, L., Yu, H., Zain-ul-Abdin, Khan, R. U. (2017). Ferrocene-based redox-responsive polymer gels: Synthesis, structure and applications. J. Organomet. Chem., 828, 38–51.

Pittman, C. U. Jr., Lin, С.-C., Rounsefell, T. D. (1978). Kinetics of Radical-Initiated Addition Homopolymerization of n5-(Vinilcyclopentadienyl) tricarbonylmanganese. Macromolecules, 11(5), 1022–1027.

Korshak, V. V., Sosin, S. L., Chistyakova, M.V. (1958). [Application of polyrecombination reaction for polymers synthesis]. Doklady AN SSSR, 121(2), 299–302 (in Russian).

Pittman, C. U. Jr., Lai, J. C., Venderpool, D. P. (1970). Kinetics of ferrocenylmethyl acrylate and ferrocenylmethyl methacrylate polymerization. Preparation of polymeric ferricinium salts. Macromolecules, 3(1), 105–107.

Lai, J. C., Rounsefell, T. D., Pittman, C. U. Jr. (1971). Copolymerization of Ferrocenylmethyl Acrylate and Ferrocenylmethyl Methacrylate with Organic Monomers. Macromolecules, 4(2), 155–161.

Schlögl, К., Steyrer, W. (1965). Ferrocene-Acetylene, 5. Mitt.: Eine allgemeine Methode zur Darstellung von Ferrocenylacetylenen und–allenen aus Acylferrocenen (27. Mitt. über Ferrocenderivative). Monatshefte für Chemie, 96(5), 1520–1535.

Osgerby, J. M., Pauson, P. L. (1961). Ferrocene derivatives. Part IX. Some disubstituted derivatives. J. Chem. Soc., 0, 4604–4609.

Tsubakiyama, K., Matsuo, T., Sasaki, T., Yoshida, K., Fujimura, T., Araki, K. (1979). Ferrocene-containing polymers. I. Radiation-induced polymerization of ferrocenylmethyl methacrylate. J. Polym. Sci., Part A: Polym. Chem., 17(1), 173-184.

Rosenblum, M. Brawn, N., Papenmeier, J., Applebaum, M. (1966). Synthesis of ferrocenylacetylenes. J. Organomet. Chem., 6(2), 173–180.

Pomogaylo, A. D., Savostyanov, V. S. (1988). [Metal-containing monomers and polymers on their basis]. Moscow, USSR: Khimiya (in Russian).

Ünver, A., Dilsiz, N., Volkan, M., Akovali, G. (2005). Investigation of acetyl ferrocene migration from hydroxyl-terminated polybutadiene based elastomers by means of ultraviolet-visible and atomic absorption spectroscopic techniques. J. Appl. Polym. Sci., 96(5), 1654–1661.

Zain-ul-Abdin, Wang, L., Yu, H., Saleem, M., Akram, M., Khalid, H., Abbasi, N. M., Yang, X. (2017). Synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts. J. Colloid and Interface Sci., 487, 38–51.

Palaiah, R. S., Bulakh, N. R., Talawar, M. B., Mukundan, T. (2000). Studies on metal salts of 4-(2,4,6-trinitroanilino) benzoic acid. J. Energ. Mater., 18(2-3), 207–217.

Nair, J. K., Talawar, M. B., Mukundan, T. (2001). Transition metal salts of 2,4,6-trinitroanilinobenzoic acid – potential energetic ballistic modifiers for propellant. J. Energ. Mater., 19(2-3), 155-162.

Soman, R. R., Mukundan, T., Bhat, V. K., Singh, H. (2000). Lead salt of 2,4,n-trinitroanilinoacetic acid – an energetic ballistic modifier for double base propellants. J. Energ. Mater., 18(2-3), 163–175.

Fong, C. W., Hamshere, B. L. (1986). The mechanism of burning rate catalysis in composite propellants by transition metal complexes. Combust. Flame, 65(1), 71-78.

Kulkarni, P. B., Reddy, T. S., Nair, J. K., Nazare, A. N., Talawar, M. B., Mukundan, T., Asthana, S. N. (2005). Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-trinitroanilino benzoic acid (TABA): Potential energetic ballistic modifiers. J. Hazard. Mater., 123(1-3), 54–60.

Rao, K. U. B., Soman, R. R., Singh, H. (1990). Explosive properties of metal salts of nitroanilinoacetic acids. J. Energ. Mater., 8(1-2), 99–109.

Singh, S., Srivastava, P., Singh, G. (2015). Nano oxalates of Fe, Co, Ni: Burning rate modifiers for composite solid propellants. J. Ind. Eng, Chem., 27, 88-95.

Joshi, A. D., Singh, H. (1992). Effect of certain lead and copper compounds as ballistic modifier for double base rocket propellants. J. Energ. Mater., 10(4-5), 299–309.

Sinditskii, V. P., Serushkin, V. V. (1996). Design and combustion behavior of explosive coordination compounds. Def. Sci. J., 46(5), 371–383.

Singh, G., Prem Felix, S., Pandey, D. K. (2004). Studies on energetic compounds part 37: Kinetics of thermal decomposition of perchlorate complexes of some transition metals with ethylenediamine. Thermochim. Acta, 411(1), 61–71.

Singh, G., Pandey, D. K. (2003). Studies on Energetic Compounds Part 27: Kinetics and Mechanism of Thermolysis of Bis(Ethylenediamine)Metal Nitrates and Their Role in the Burning Rate of Solid Propellants. Propellants, Explos., Pyrotech., 28(5), 231-239.

Kumar, D., Kapoor, I. P. S., Singh, G., Fröhlich, R. (2012). Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2'-bipyridine ligand. Thermochim. Acta, 545, 67–74.

Singh, C. P., Singh, A., Nibha, Daniliuc, C. G., Kumar, B., Singh, G. (2015). Preparation, crystal structure and thermal studies of cadmium perchlorate complex with 2,2’-bipyridine // J. Therm. Anal. Calorim., 121(2), 633–640.

Singh, G., Pandey, D. K. (2003). Studies on energetic compounds. Part 35: Kinetics of thermal decomposition of nitrate complexes of some transition metals with propylenediamine. Combust. Flame, 135(1-2), 135–143.

Lian, P., Li, Y., Li, H., Huo, H., Wang, B., Lai, W. (2017). A DFT study on the structure and property of novel nitroimidazole derivatives as high energy density materials. Comput. Theor. Chem., 1118, 39–44.

Yin, P., Shreeve, J. M. (2017). Chapter four – Nitrogen-rich azoles as high density energy materials: Reviewing the energetic footprints of heterocycles. Adv. Heterocycl. Chem., 121, 89–131.

Türker, L. (2016). Azo-bridged triazoles: Green energetic materials. Def. Technol., 12(1), 1–15.

Talawar, M. B., Divekar, C.N., Makashir, P. S., Asthana, S. N. (2005). Tetrakis-(4-Amino-1,2,4-Triazole)Copper Perchlorate: A Novel Ballistic Modifier for Composite Propellants. J. Propul. Power, 21(1), 186–189.

Hou, X., Guo, Z., Yang, L., Ma, H. (2019). Four three-dimensional metal-organic frameworks assembled from 1H-tetrazole: Synthesis, crystal structures and thermal properties. Polyhedron, 160, 198-206.

Jurowska, A., Olszewska, A., Hodorowicz, M., Szklarzewicz, J. (2019). Tetrazole potentially high energy materials based on Mo(IV) and W(IV) complexes. Polyhedron, 160, 189-197.

Huang, D., Zhao, P., Astruc, D. (2014). Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coord. Chem. Rev., 272, 145-165.

Li, F., Bi, Y., Zhao, W., Zhang, T., Zhou, Z., Yang, L. (2015). Nitrogen-Rich Salts Based on the Energetic [Monoaquabis(N,N-bis(1H-tetrazol-5-ylamine)-zinc(II)] Anion: A Promising Design in the Development of New Energetic Materials. Inorganic Chemistry, 54(4), 2050-2057.

Singh, G., Prem Felix, S. (2002). Studies on energetic compounds 25. An overview of preparation, thermolysis and applications of the salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J. Hazard. Mater., 90(1), 1–17.

Yi, J.-H., Zhao, F.-Q., Hong, W.-L., Xu, S.-Y., Hu, R.-Z., Chen, Z.-Q., Zhang, L.-Y. (2010). Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant. J. Hazard. Mater., 176(1-3), 257–261.

Kulkarni, P. B., Purandare, G. N., Nair, J. K., Talawar, M. B., Mukundan, T., Asthana, S. N. (2005). Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J. Hazard. Mater., 119(1-3), 53–61.

Singh, G., Prem Felix, S. (2003). Studies on energetic compounds: Part 36: Evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants. Combust. Flame, 135(1-2), 145–150.

Milyushkin, A. L., Birin, K. P., Matyushin, D. D., Semeikin, A. V., Iartsev, S. D., Karnaeva, A. E., Uleanov, A. V., Buryak, A. K. (2019). Isomeric derivatives of triazoles as new toxic decomposition products of 1,1-dimethylhydrazine. Chemosphere, 217, 95–99.

Synthesis and Characterization of Some Cobalt (II), Nickel (II), Zinc (II) and Cadmium (II) Hydrazine Azides / K. K. Narang, M. K. Singh (Mrs), K. B. Singh, R. A. Lal. // Synth. React. Inorg. Met.-Org. Chem. – 1996. – Vol. 26, N 4. – P. 573 Narang, K. K., Singh (Mrs), M. K., Singh, K. B., Lal, R. A. (1996). Synthesis and Characterization of Some Cobalt (II), Nickel (II), Zinc (II) and Cadmium (II) Hydrazine Azides. Synth. React. Inorg. Met.–Org. Chem., 26(4), 573–589.

Tani, H., Diamon, Y., Sasaki, M., Matsuura, Y. (2017). Atomization and hypergolic reactions of impinging streams of monomethylhydrazine and dinitrogen tetroxide. Combust. Flame, 185, 142–151.

Amrousse, R., Katsumi, T., Azuma, N., Hori, K. (2017). Hydroxylammonium nitrate (HAN) – based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up. Combust. Flame, 176, 334–348.

Chhabra, J. S., Talawar, M. B., Makashir, P. S., Asthana, S. N., Singh, H. (2003). Synthesis, characterization and thermal studies of (Ni/Co) metal salts of hydrazine: potential initiatory compounds. J. Hazard. Mater., 99(3), 225–239.

Patil, K. C., Nesamani, C., Pai Verneker, V. R. (1982). Synthesis and Characterisation of Metal Hydrazine Nitrate, Azide and Perchlorate Complexes. Synth. React. Inorg. Met. – Org. Chem., 12(4), 383-395.

Shunguan, Z., Youchen, W., Wenyi, Z., Jingyan, M. (1997). Evaluation of a New Primary Explosive: Nickel Hydrazine Nitrate (NHN) Complex. Propellants, Explos., Pyrotech., 22(6), 317–320.

Chen, H.-Y., Zhang, T.-L., Zhang, J.-G., Yu, K.-B. (2005). Crystal Structure and Thermal Property of a Binuclear Manganese(II) Sulfate Complex with Carbohydrazide. Struct. Chem., 16(6), 657–663.

Li, Z.-M., Zhang, T.-L., Yang, L., Zhou, Z.-N., Zhang, J.-G. (2012). Synthesis, crystal structure, thermal decomposition, and non-isothermal reaction kinetic analysis of an energetic complex: [Mg(CHZ)3](ClO4)2 (CHZ = carbohydrazide). J. Coord. Chem., 65(1), 143–155.

Huang, H., Zhang, T., Zhang, J., Wang, L. (2010). A screened hybrid density functional study on energetic complexes: Cobalt, nickel and copper carbohydrazide perchlorates. J. Hazard. Mater., 179(1-3), 21–27.

Talawar, M. B., Agrawal, A. P., Chhabra, J. S., Asthana, S. N. (2004). Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide. J. Hazard. Mater., 113(1-3), 57–65.

Huang, H., Zhang, T., Zhang, J., Wang, L. (2009). A screened hybrid density functional study on energetic complexes: Alkaline-earth metal carbohydrazide perchlorates. J. Mol. Struct.: THEOCHEM, 915(1-3), 43–46.

Akiyoshi, M., Nakamura, H., Hara, Y. (2000). The Strontium Complex Nitrates of Carbohydrazide as a Non-Azide Gas Generator for Safer Driving – the Thermal Behavior of the Sr Complex with Various Oxidizing Agents. Propellants, Explos., Pyrotech., 25(5), 224–229.<224::AID-PREP224>3.0.CO;2-O

Liu, Y., Zhang, R., Feng, C.-G., Yang, L., Zhang, T.-L. (2015). Predicted crystal structures, analysis, impact sensitivities and morphology of solid high-energy complexes: Alkaline-earth carbohydrazide perchlorates. Cent. Eur. J. Energ. Mater., 12(2), 229–248.

Liu, R., Zhou, Z., Qi, S., Yang, L., Wu, B., Huang, H., Zhang, T. (2013). Synthesis, Crystal Structure, and Properties of a Novel, Highly Sensitive Energetic, Coordination Compound: Iron (II) Carbohydrazide Perchlorate. Cent. Eur. J. Energ. Mater., 10(1), 17–36.

Sonawane, S. H., Gore, G. M., Polke, B. G., Nazare, A. N., Asthana, S. N. (2006). Transition Metal Carbohydrazide Nitrates: Burn-rate Modifiers for Propellants. Def. Sci. J., 56(3), 391-398.

Fogelzang, A. E., Sinditskii, V. P., Egorshev, V. Y., Serushkin, V. V. (1995). Effect of Structure of Energetic Materials on Burning Rate. MRS Online Proc. Libr., 418, pp. 151–161.

Chen, S., He, W., Luo, C.-J., An, T., Chen, J., Yang, Y., Liu, P.-J., Yan, Q.-L. (2019). Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J. Hazard. Mater., 368, 404–411.

Isert, S., Xin, L., Xie, J., Son, S. F. (2017). The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants. Combust. Flame, 183, 322–329.

Yan, Q.-L., Gozin, M., Zhao, F.-Q., Cohen, A., Pang, S.-P. (2016). Highly energetic composition based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799-4851.

Li, Y., Alain-Rizzo, V., Galmiche, L., Audebert, P., Miomandre, F., Louarn, G., Bozlar, M., Pope, M. A., Dabbs, D. M., Aksay, I. A. (2015). Functionalization of graphene oxide by tetrazine derivatives: A versatile approach toward covalent bridges between graphene sheets. Chem. Mater., 27(12), 4298–4310.

Cohen, A., Yang, Y., Yan, Q.-L., Shlomovich, A., Petrutik, N., Burstein, L., Pang, S.-P., Gozin, M. (2016). Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide-Cu(II) complex. Chem. Mater., 28(17), 6118–6126.

Yan, Q.-L., Cohen, A., Chinnam, A. K., Petrutik, N., Shlomovich, A., Burstein, L., Gozin, M. (2016). A layered 2D triaminoguanidine – glyoxal polymer and its transition metal complexes as novel insensitive energetic nanomaterials. J. Mater. Chem. A, 4(47), 18401–18408.

Yan, Q.-L., Liu, P.-J., He, A.-F., Zhang, J.-K., Ma, Y., Hao, H.-X., Zhao, F.-Q., Gozin, M. (2018). Photosensitive but mechanically insensitive graphene oxide-carbohydrazide-metal hybrid crystalline energetic nanomaterials. Chem. Eng. J., 338, 240–247.