MODIFICATION OF HIGH-ENERGY SUBSTANCES RECOVERED FROM PRODUCTS OF SOLID PROPELLANT DISPOSAL

Authors

  • Elena Yu. Nesterova Дніпровський національний університет ім. Олеся Гончара, Ukraine
  • Oleksiy L. Kyrychenko State Enterprise Research-Industrial Complex “Pavlograd Chemical Plant”, Ukraine
  • Maxym M. Cheltonov State Enterprise Research-Industrial Complex “Pavlograd Chemical Plant”, Ukraine

DOI:

https://doi.org/10.15421/081922

Keywords:

nitramine, solid propellant, crystallization, octogen, extraction, dimethyl sulfoxide

Abstract

The main components of high-energy compositions are nitramines: octogen (HMX) & hexogen (RDX). The solution to the problem of the lack of these components is possible through the use of returnable resources, which are obtained using a certain technology for the disposal of solid rocket fuel and ammunition, unsuitable for further use for its intended purpose. The purpose of this research is to develop a crystallization method for octogen extracted from solid rocket fuel and to obtain modified nitramine suitable for use in high-energy compositions (HEC). The parameters of the process of recrystallization of the extracted nitramine from an aqueous solution of dimethyl sulfoxide (DMSO) were determined in the laboratory: the dependence of the average particle size of the substance on the rotational speed of the mechanical stirrer and the cooling rate of the solution. The required crystal size of the modified nitramine is obtained in the process of crystallization with a rotational speed of a mechanical stirrer in the range of 200 – 330 rpm and a cooling rate of an aqueous solution of DMSO not higher than 2 °C / min, it was found. Addition of seed crystals of standard nitramine up to 10 % (by weight) and 0.5 % (by weight) modifier (isomethyltetrahydrophthalic anhydride) positively affects the crystalline form of the modified product with the formation of crystals of predominantly correct isometric form. The resulting modified nitramine has characteristics that satisfy the requirements for use in HЕC.

References

Безопасность процессов производства и применения эмульсионных взрывчатых веществ с компонентами утилизируемых вооружений. Монография / Шиман Л.Н. Устименко Е.Б., Голинько В.И., Соболев В.В. – Д.: Лира, 2013. – 526 с.

Пат. 6653506 США, МКИ C07C 24/00. Recovering nitramines and reformulation of by-products / Randall S. Phillips, Andrew W. Cain, Thomas J. Schilling, Michael Miks (США); заявник та патентовласник Randall S. Phillips (США), Andrew W. Cain (США), Thomas J. Schilling (США), Michael Miks (США), TPL Incorporated (США). - №10/246608; Заявл. 16.09.2002; Опубл. 25.11.2003; НКИ 564/112. – 5 с.

Основы промышленной технологии утилизации крупногабаритных твёрдотопливных зарядов / Забелин Л.В., Р.В. Гафиятулин, А.Н. Поник, В.Ю. Мелешко. - М.: Недра-Бизнесцентр, 2004. - 226 с.

Poulin, Isabelle. Literature Review on Demilitarization of Munitions. Prepared for the RIGHTTRACT Technology Demonstration Project. Defense R&D Canada‐ Valcartier, Quebec, Canada. 2010. – 64 p.

Пат. 4389265 США МКИ C06В 45/10. Breakdown of solid propellans and explosives, recovery of nitramines / Tompa A.S., French D.M., White B.R. (США); заявник та патентовласник Tompa A.S. (США), French D.M. (США), White B.R. (США), The United States of America as represented by the Secretary of the Navy (США). - № 283,709; Заявл. 16.07.81; Опубл. 21.06.83; НКИ 149/109.6. – 5 с.

Recovery and Reuse of HMX/RDX from Propellants and Explosives / Poehlein, S., Wilharm, C., Sims, K., Burch, D., Schilling, T. and Keys, F., Naval Surface Warfare Center, 2002. – 160 p.

Пат. 5284995 США МКИ C06В 21/00. Method to extract and recover nitramine oxidizers from solid propellants using liquid ammonia / Melvin W.S. (США); заявник та патентовласник Melvin W.S. (США), The United States of America as represented by the Secretary of the Army(США). - № 28,014; Заявл. 08.03.93; Опубл. 08.02.94; НКИ 588/203. – 19 с.

Ахмедшина В.А. Кристаллизация энергонасыщенных соединений из растворов: учебное пособие / Ахмедшина В.А., Базотов В.Я. - Казань: КНИТУ, 2012. – 124 с.

Октоген — термостойкое взрывчатое вещество / Е.Ю. Орлова, Н.А., Орлова, В.Ф. Жилин, В.Л. Збарский, Л.И. Витковская., М.: Недра, 1975. - 128 с.

Kinetics of reversible polymorphic transitions in high-energy compounds. Phase transformations in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine / Chukanov, N. V., Zakharov, V. V., Vozchikova, S. A., Chervonnyi, A. D., & Korsounskii, B. L. // Russian Journal of Physical Chemistry – 2014. - B, 8(5), P. 641–650.

Structural and Vibrational Properties of Crystalline β ‐Octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine at High Temperatures: Ab Initio Molecular Dynamics Studies / Xiang, D., Ji, G., & Zhu, W. // Chemistry Select – 2019. - 4(14), P. 4244–4250.

Novel Organic Compounds Containing Nitramine Groups Suitable as High-Energy Cyclic Nitramine Compounds / Keshavarz, M. H., & Abadi, Y. H. // // Chemistry Select – 2018. - 3(28), P. 8238–8244.

Pressure-dependent Elastic Coefficients of β-HMX from Molecular Simulations / N. Mathew, T. Sewell // Prop., Explos., Pyrotech., - 2018, 43(3), P. 223–227.

New theoretically predicted RDX- and β-HMX-based high-energy-density molecules /

Jeong, K. // Int. J. Quantum Chem. – 2018, 118(6), e25528.

Energetic Characteristics of HMX-Based Explosives Containing LiH / Ding, X.-Y., Shu, Y.-J., Liu, N., Wu, M.-J., Zhang, J.-G., Gou, B.-W., Wang, W. // Prop., Explos., Pyrotech., - 2016, 41(6), P. 1079–1084.

Projectile Impact Ignition and Reaction Violent Mechanism for HMX-Based Polymer Bonded Explosives at High Temperature / Dai, X., Wen, Y., Wen, M., Huang, F., Li, M., & Deng, C. // Prop., Explos., Pyrotech., - 2017, 42(7), P. 799–808.

Modeling The Effects of Shock Pressure and Pore Morphology on Hot Spot Mechanisms in HMX / Springer, H. K., Bastea, S., Nichols, A. L., Tarver, C. M., & Reaugh, J. E. // Prop., Explos., Pyrotech., - 2018, 43(8), P. 805–817.

A Computational Study of Density of Some High Energy Molecules / Moxnes, J. F., Hansen, F. K., Jensen, T. L., Sele, M. L., & Unneberg, E. // Prop., Explos., Pyrotech., - 2016, 42(2), P. 204–212.

A Three-Dimensional Hierarchical Dandelion-Like HMX Architecture Formed at a Liquid-Liquid Interface / Cheng, M., Li, P., Duan, X., & Pei, C. // Crystal Research and Technology, - 2018, 53(3), 1700226.

The Effect of HMX Impurity and Irganox Antioxidant on Thermal Decomposition Kinetics of RDX by TG/DSC Non-Isothermal Method / Sinapour, H., Damiri, S., Ravanbod, M., & Pouretedal, H. R. // Prop., Explos., Pyrotech., - 2019, 44, P. 429.

X‐ray Phase Contrast Imaging of the Impact of a Single HMX Particle in a Polymeric Matrix / Kerschen, N. E., Sorensen, C. J., Guo, Z., Mares, J. O., Fezzaa, K., Sun, T., Chen, W. W. // Prop., Explos., Pyrotech., - 2019, 44, 447.

Biotransformation of RDX and HMX by Anaerobic Granular Sludge with Enriched Sulfate and Nitrate / An, C., Shi, Y., He, Y., Huang, G., Liu, Y., & Yang, S. // Water Environ. Res., - 2017, 89(5), P. 472–479.

Preparation and Performance of Nano HMX/TNT Cocrystals / Li, H., An, C., Guo, W., Geng, X., Wang, J., & Xu, W. // Prop., Explos., Pyrotech., - 2015, 40(5), P. 652–658.

Solubilities of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in γ-Butyrolactone + Water, Dimethylsulfoxide + Water, and N-Methyl pyrrolidone + Water / Kim K.J., Kim H.S., Sim J.S. // Journal of Chemical & Engineering Data. – 2013, Vol. 58 (9), P. 2410-2413.

Матусевич Л.Н. Кристаллизация в присутствии затравочных кристаллов // Ж. прикл. химии, - 1961, 34(5), с. 986-993.

Published

2020-01-15