TECHNOLOGY OF OBTAINING NEW MATERIALS FOR ADSORPTIVE HEAT ENERGY TRANSFORMATION TYPE OF «SILICA GEL – CRYSTALLINE HYDRATE»

Authors

  • Yana Serhiienko State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’, Ukraine
  • Kostyantyn Sukhyy State Higher Education Institution ‘Ukrainian State University of Chemical Engineering’,
  • Elena Belyanovskaya State Higher Education Institution 'Ukrainian State University of Chemical Engineering', Ukraine
  • Elena Kolomiyets State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Mykhailo Gubynskyi National Academy of Metallurgy of Ukraine, Ukraine
  • Olga Tkalya State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Irina Sukha State Higher Education Institution 'Ukrainian State University of Chemical Engineering',
  • Oleksandr Zaichuk State Higher Education Institution 'Ukrainian State University of Chemical Engineering',

DOI:

https://doi.org/10.15421/081924

Keywords:

heat storage, adsorptive heat energy transformation, composite adsorbent, sol – gel technology.

Abstract

This article is focused on sol-gel technology of industrial production of composite sorbents «silica gel – sodium sulphate» and «silica gel – sodium acetate», which includes the next stages: preparation of aqueous solution of silicate glass and polymer quaternary ammonium salt (PQAS), formation of nuclei of the silicate phase, formation of silicon-oxygen matrix, drying and fractionation of sorbent. According to the developed technology, sorbents were prepared with a granula size of 3 – 5 mm. Bulk density is stated to be of 0.72 g/cm3 and 0.65 g/cm3 for composites «silica gel – sodium sulphate» and ‘silica gel – sodium acetate’. It is shown that composite sorbents are characterized by high water adsorption at the level of 0.42 – 0.66 g/g. Temperatures of regeneration of composites «silica gel – sodium sulphate» and ‘silica gel – sodium acetate’ are stated to be of 90 °C and 60 °C. Heats of adsorption of composites «silica gel – sodium sulphate» and «silica gel – sodium acetate» are 2200 kJ/kg and 1400 kJ / kg, respectively.

References

De Jong, A.-J., Trausel, F., Finck, C., van Vliet, L., Cuypers, R. (2014). Thermochemical Heat Storage – System Design Issues. Energy Procedia, 48, 309–319.

http://doi.org / 10.1016/j.egypro.2014.02.036

Ferchaud, C. J., Scherpenborg, R. A. A., Zondag, H. A., de Boer, R. (2014). Thermochemical Seasonal Solar Heat Storage in Salt Hydrates for Residential Applications – Influence of the Water Vapor Pressure on the Desorption Kinetics of MgSO4·7H2O. Energy Procedia. 57, 2436–2440.

http://doi: 10.1016/j.egypro.2014.10.252

Zondag, H., Kikkert, B., Smeding, S., de Boer, R., Bakker, M. (2013). Prototype thermochemical heat storage with open reactor system. Applied Energy, 2013. 109, 360–365.

http://doi: 10.1016/j.apenergy.2013.01.082

Santori, G., Frazzica, A., Freni, A., Galieni, M., Bonaccorsi, L., Polonara, F., Restuccia, G. (2013). Optimization and testing on an adsorption dishwasher. Energy, 50, 170–176.

http://doi: 10.1016/j.energy.2012.11.031

Cabeza, L. F., Solé, A., Barreneche, C. (2017). Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy, 110, 3–39.

http://doi: 10.1016/j.renene.2016.09.059

Gordeeva, L., Grekova, A., Krieger, T., Aristov, Y. (2013). Composites “binary salts in porous matrix” for adsorption heat transformation. Applied Thermal Engineering, 2013, 50(2), 1633–1638.

http://doi: 10.1016/j.applthermaleng.2011.07.040

Scapino, L., Zondag, H. A., Van Bael, J., Diriken, J., Rindt, C. C. M. (2017). Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Applied Energy. 190, 920–948.

http://doi: 10.1016/j.apenergy.2016.12.148

Grekova, A. D., Gordeeva, L. G., Aristov, Y. I. (2017). Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Applied Thermal Engineering, 124, 1401–1408.

http://doi: 10.1016/j.applthermaleng.2017.06.122

Zamengo, M., Kato, Y. (2017). Comparison of magnesium hydroxide/expanded Graphite composites for thermal energy storage in cogeneration nuclear power plants, Energy Procedia. 131, 119–126.

http://doi: 10.1016/j.egypro.2017.09.463

Tanashev, Y. Y., Krainov, A. V., Aristov, Y. I. (2013). Thermal conductivity of composite sorbents ‘salt in porous matrix’ for heat storage and transformation. Applied Thermal Engineering, 61(2), 401–407.

http:// doi: 10.1016/j.applthermaleng.2013.08.022

Hiremath, C. R., Kadoli, R. (2013). Experimental studies on heat and mass transfer in a packed bed of burnt clay impregnated with CaCl2 liquid desiccant and exploring the use of gas side resistance model. Applied Thermal Engineering. 50(1) P. 1299–1310.

http://doi: 10.1016/j.applthermaleng.2012.08.002

Bao, H., Ma, Z., Roskilly, A. P. (2016). Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation. Applied Energy, 164, 228–236.

http://doi: 10.1016/j.apenergy.2015.11.052

Frazzica, A., Freni, A. (2017). Adsorbent working pairs for solar thermal energy storage in buildings, Renewable Energy, 110, 87–94.

http://doi: 10.1016/j.renene.2016.09.047

Sukhyy, K. M., Belyanovskaya, E. A., Kozlov, Y. N., Kolomiyets, E. V., Sukhyy, M. P. (2014). Structure and adsorption properties of the composites ‘silica gel–sodium sulphate’, obtained by sol–gel method. Applied Thermal Engineering, 64 (1-2), 408–412.

http://doi: 10.1016/j.applthermaleng.2013.12.013

Sukhyy, K. M., Gomza, Y. P., Belyanovskaya, E. A., Klepko, V. V., Shilova, O. A., Sukhyy, M. P (2015). Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes. Journal of Sol-Gel Science and Technology, 74(2), 472–481.

http://doi: 10.1007/s10971-015-3622-7

Vlasova, O., Kovalenko, V., Kotok, V., Vlasov, S., Cheremysinova, A. (2017). Investigation of physical and chemical properties and structure of tripolyphosphate coatings on zinc plated steel. Eastern-European Journal of Enterprise Technologies. 3(12), 4–8.

http://doi: 10.15587/1729-4061.2017.103151

Donkers,, P.A.J., Pel, L., Adan, O.C.G. (2016). Experimental studies for the cyclability of salt hydrates for thermochemical heat storage. J. Energy Storage, 5, 25–32.

http://dx. doi.org/10.1016/j.est.2015.11.005.

Elsayed, A., Elsayed, E., Al-Dadah, R., Mahmoud, S., Elshaer, A., Kaialy, W. (2016). Thermal energy storage using metal–organic framework materials. Applied Energy, 186, 509 – 519.

http://dx.doi.org/10.1016/j.apenergy.2016.03.113.

Ferchaud, C.J., Scherpenborg, R.A.A., Zondag, H.A., De Boer, R. (2014). Thermochemical seasonal solar heat storage in salt hydrates for residential applications – influence of the water vapor pressure on the desorption kinetics of MgSO4·7H2O. Energy Procedia, 57, 2436–2440.

http://dx.doi.org/10.1016/j.egypro.2014.10.252.

Glaznev, I., Ponomarenko, I., Kirik, S., Aristov, Y. (2011). Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat: pore size effect. Int. J. Refrig., 34(5), 1244–1250.

http://dx.doi.org/10.1016/j.ijrefrig.2011.02.007.

Vasiliev, L.L., Gulko, N.V., Khaustov, V.M. (1996). Solid adsorption refrigerators with active carbon – acetone and carbon – ethanol pairs. Proceedings of the International Sorption Heat Pump Conference. 1; Montreal, Quebec, Canada, 3–6.

Gordeeva, L.G., Glaznev, I.S., Savchenko, E.V., Malakhov, V.V., Aristov, Y.I. (2006). Impact of phase composition on water adsorption on inorganic hybrids “salt/silica”. J. Colloid Interface Sci., 301(2), 685–691.

http://dx.doi.org/10.1016/j.jcis.2006.05.009.

Gordeeva, L.G., Mrowiec-Bialon, J., Jarzebski, A.B., Lachowski, A.I. (1999). Selective water sorbents for multiple applications, 8. Sorption properties of CaCl2−SiO2 sol-gel composites. React. Kinet. Catal. Lett. 66(1), 113–120.

http://dx.doi.org/10.1007/BF02475749.

Wang, R.Z., Li, L.X. (2007). New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination, 212, 176–182.

http://dx.doi.org/10. 1016/j.desal.2006.10.008.

Wu, H., Wang, S. (2006). Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage. Int. J. Therm. Sci., 45, 804–813.

http://dx. doi.org/10.1016/j.ijthermalsci.2005.10.009.

Zondag, H., Kikkert, B., Smeding, S., de Boer, R., Bakker, M. (2013). Prototype thermochemical heat storage with open reactor system. Applied Energy, 109, 360–365.

http:// dx.doi.org/10.1016/j.apenergy.2013.01.082.

Downloads

Published

2020-01-20